**Motivations :** * Create a complete simulator for 4NK Waste & Water modular waste treatment infrastructure * Implement frontend-only application with client-side data persistence * Provide seed data for wastes and natural regulators from specifications **Root causes :** * Need for a simulation tool to configure and manage waste treatment projects * Requirement for localhost-only access with persistent client-side storage * Need for initial seed data to bootstrap the application **Correctifs :** * Implemented authentication system with AuthContext * Fixed login/logout functionality with proper state management * Created placeholder pages for all routes **Evolutions :** * Complete application structure with React, TypeScript, and Vite * Seed data for 9 waste types and 52 natural regulators * Settings page with import/export and seed data loading functionality * Configuration pages for wastes and regulators with CRUD operations * Project management pages structure * Business plan and yields pages placeholders * Comprehensive UI/UX design system (dark mode only) * Navigation system with sidebar and header **Page affectées :** * All pages: Login, Dashboard, Waste Configuration, Regulators Configuration, Services Configuration * Project pages: Project List, Project Configuration, Treatment Sites, Waste Sites, Investors, Administrative Procedures * Analysis pages: Yields, Business Plan * Utility pages: Settings, Help * Components: Layout, Sidebar, Header, base components (Button, Input, Select, Card, Badge, Table) * Utils: Storage, seed data, formatters, validators, constants * Types: Complete TypeScript definitions for all entities
14 KiB
4NK Waste & Water - Complete Calculation Formulas Reference
1. Infrastructure Capacity Calculations
1.1 Daily Processing Capacity
Daily_processing_capacity (T/day) = Module_capacity (T) × Number_of_modules
Daily_processing_capacity = 67T × 21 = 1,407T/day
1.2 Water Content Calculation
Water_content (T) = Total_waste (T) × Water_percentage (%)
Water_content = 67T × 75% = 50.25T water per module
1.3 Total Containers
Total_containers = Number_of_modules × Containers_per_module
Total_containers = 21 × 4 = 84 containers
2. Processing Time Calculations
2.1 Mesophilic Digestion Duration
Mesophilic_duration (days) = Hygienization_duration + Additional_days
Mesophilic_duration = 18 days + 3 days = 21 days
2.2 Drying and Bioremediation Duration
Drying_bioremediation_duration (days) = Drying_duration + (Bioremediation_phases × Phase_duration)
Drying_bioremediation_duration = 21 days + (3 phases × 21 days) = 84 days (variable)
2.3 Thermophilic Digestion and Composting Duration
Thermophilic_composting_duration (days) = Thermophilic_duration + Composting_duration
Thermophilic_composting_duration = 18 days + 3 days = 21 days
2.4 Spirulina Cycle Duration
Spirulina_cycle_duration (hours) = 72 hours
Spirulina_cycle_duration (days) = 72 / 24 = 3 days
3. Methane Production Calculations
3.1 Dry Matter Calculation (VS - Volatile Solids)
Dry_matter (kg VS) = Waste_quantity (kg) × (1 - Water_percentage (%))
Dry_matter_percentage (%) = 100% - Water_percentage (%)
Example:
- Waste quantity: 67,000 kg (67T)
- Water percentage: 75%
- Dry matter: 67,000 × (1 - 0.75) = 67,000 × 0.25 = 16,750 kg VS
- Dry matter percentage: 100% - 75% = 25%
3.2 Methane Production from BMP
Methane_production (m³/day) = BMP (Nm³ CH₄/kg VS) × Dry_matter (kg VS/day) × Efficiency_factor
Parameters:
- BMP: Biochemical Methane Potential (Nm³ CH₄/kg VS) - varies by waste type
- Dry_matter: Calculated from waste quantity and water percentage
- Efficiency_factor: Processing efficiency (typically 0.7-0.9)
3.3 Origin Units to Methane Conversion
Methane_per_1000m³ = Number_of_origin_units × Conversion_factor
Parameter: Number of origin units to produce 1000m³ of methane (varies by waste origin)
4. Gas Production Calculations
4.1 Biogas Composition
Biogas_total (m³/day) = Methane_production (m³/day) / Methane_percentage_in_biogas
Biogas Composition:
- Methane (CH₄): 40% of biogas
- CO₂: 60% of biogas
4.2 Methane from Biogas
Methane_production (m³/day) = Biogas_total (m³/day) × 0.40
4.3 CO₂ Production from Biogas
CO2_production (m³/day) = Biogas_total (m³/day) × 0.60
Alternative calculation:
CO2_production (m³/day) = Methane_production (m³/day) × (0.60 / 0.40)
CO2_production (m³/day) = Methane_production (m³/day) × 1.5
4.4 Total Gas Production
Total_gas_production (m³/day) = Methane_production (m³/day) + CO2_production (m³/day)
Total_gas_production (m³/day) = Biogas_total (m³/day)
5. Energy Calculations
5.1 Heat Energy from Biogas
Heat_energy (kJ/day) = Methane_production (m³/day) × Methane_energy_content (kJ/m³) × Combustion_efficiency
Parameters:
- Methane_energy_content: 35,800 kJ/m³ (lower heating value)
- Combustion_efficiency: 0.90 (90%)
5.2 Heat Energy Conversion to kWh
Heat_energy (kW.h/day) = Heat_energy (kJ/day) / 3600
5.3 Electrical Power from Biogas Generator
Electrical_power_biogas (kW) = Methane_production (m³/day) × Methane_energy_content (kJ/m³) × Electrical_efficiency / (3600 × 24)
Parameter: Electrical_efficiency: 0.40 (40% for combined heat and power systems)
5.4 Electrical Power from Solar Panels
Electrical_power_solar (kW) = Solar_panel_surface (m²) × Solar_irradiance (kW/m²) × Panel_efficiency
Parameters:
- Solar_irradiance: Varies by location and season (typically 0.1-1.0 kW/m²)
- Panel_efficiency: Typically 0.15-0.22
5.5 Total Electrical Power
Total_electrical_power (kW) = Electrical_power_biogas (kW) + Electrical_power_solar (kW)
5.6 Module Electrical Consumption
Module_electrical_consumption (kW) = Sum of all equipment consumption:
- 1 pump (méthanisation): 0.5 kW
- 1 séchoir du gaz: 2.0 kW
- 1 compresseur: 3.0 kW
- 1 lampe UV-C × 12m: 0.3 kW
- 5 racloires électriques × 3: 1.5 kW
- 1 pompe (spiruline): 0.5 kW
- 5 × 12m LED de culture: 0.6 kW
- 3 pompes eau: 1.5 kW
- Capteurs: 0.1 kW
- 1 serveur: 0.2 kW
- 1 borne Starlink: 0.1 kW
- 1 tableau élec: 0.1 kW
- 1 convertisseur panneaux solaires: 0.1 kW
Total per module: ~10.5 kW
Total_modules_consumption (kW) = Module_electrical_consumption (kW) × Number_of_modules
Total_modules_consumption (kW) = 10.5 kW × Number_of_modules
5.7 Net Electrical Power
Net_electrical_power (kW) = Total_electrical_power (kW) - Total_modules_consumption (kW)
6. Bitcoin Mining Calculations
6.1 Number of Flex Miners
Number_of_flex_miners = Available_electrical_power (kW) / Power_per_miner (kW)
Number_of_flex_miners = Available_electrical_power (kW) / 2 kW
6.2 Bitcoin Production
Bitcoins_BTC_per_year = 79.2 × 0.0001525 / flex_miner
Formula: BTC/year = 79.2 × 0.0001525 / number_of_flex_miners
Parameters:
- 79.2: Constant factor
- 0.0001525: BTC per flex miner factor
- flex_miner: Number of 4NK flex miners (2kW each)
6.3 Bitcoin Value
Bitcoin_value (€) = Bitcoin_quantity (BTC) × Bitcoin_price (€/BTC)
Parameter: Bitcoin_price = 100,000 €/BTC
7. Material Output Calculations
7.1 Water Output
Water_output (t/day) = Water_input (t/day) - Water_consumed_in_processes (t/day) + Water_from_spirulina (t/day)
Water Input:
Water_input (t/day) = Waste_quantity (t/day) × Water_percentage (%)
Water_input = 67T × 75% = 50.25T water per module per day
7.2 Fertilizer Production
Fertilizer_output (t/day) = Composting_output (t/day) × Fertilizer_yield_factor
Parameter: Fertilizer_yield_factor: 1.0 (100% - all compost becomes standardized fertilizer)
8. Valorization Calculations
8.1 Waste Treatment Valorization
Waste_treatment_valorization (€/year) = Waste_quantity (t/year) × 100 €/t
Parameter: 100 €/t
8.2 Fertilizer Valorization
Fertilizer_valorization (€/year) = Fertilizer_quantity (t/year) × 215 €/t
Parameter: 215 €/t
8.3 Heat Valorization
Heat_valorization (€/year) = Heat_quantity (t/year) × 0.12 €/t
Parameter: 0.12 €/t
8.4 Carbon Equivalent - Burned Methane (CH₄)
CH4_carbon_valorization (€/year) = CH4_quantity (tCO₂e/year) × 172 €/tCO₂e
Parameters:
- 630 €/tC ≈ 172 €/tCO₂e
- Conversion: 1 tC = 3.67 tCO₂e
- Formula:
172 = 630 / 3.67
8.5 Carbon Equivalent - Sequestered CO₂
CO2_carbon_valorization (€/year) = CO2_sequestered (tCO₂e/year) × 27 €/tCO₂e
Parameters:
- 100 €/tC ≈ 27 €/tCO₂e
- Conversion: 1 tC = 3.67 tCO₂e
- Formula:
27 = 100 / 3.67
8.6 Carbon Equivalent - Avoided Electricity Consumption
Energy_carbon_valorization (€/year) = Electricity_avoided (kW/year) × 0.12 €/kW
Parameter: 0.12 €/kW
8.7 Land Valorization (Brownfield)
Land_valorization (€) = Brownfield_area (m²) × Valorization_rate (€/m²)
Parameter: 4000 m² brownfield (valorization rate configurable)
9. Financial Calculations
9.1 Total Revenues
Total_Revenues (€/year) = Sum of all revenue items:
- Raw_rental
- Biological_waste_treatment_service
- Bitcoin_management_service
- Provision_of_standardized_fertilizers_service
- Provision_of_waste_heat_service
- Provision_of_carbon_credit_indices_service
- Brownfield_redevelopment_service
- Transport_service
- Commercial_partnerships
- Other_revenues
9.2 Total Variable Costs
Total_Variable_Costs (€/year) = Sum of all variable cost items:
- Rental_and_services
- Commissions_intermediaries_import
- Other_variable_costs
- Transport
9.3 Gross Margin
Gross_Margin (€/year) = Total_Revenues (€/year) - Total_Variable_Costs (€/year)
9.4 Total Fixed Costs (OPEX)
Total_Fixed_Costs (€/year) = Sum of all fixed cost items:
- Salaries_and_social_charges
- Marketing_communication_expenses
- R&D_product_development
- Administrative_legal_fees
- Other_general_expenses
9.5 Operating Result (EBITDA)
EBITDA (€/year) = Gross_Margin (€/year) - Total_Fixed_Costs (€/year)
9.6 Cash Flow
Cash_Flow (€/year) = EBITDA (€/year) - Non_cash_adjustments (€/year) - Working_capital_changes (€/year)
9.7 Total Investments (CAPEX)
Total_Investments (€) = Sum of all investment items:
- Equipment_machinery
- Technology_development
- Patents_IP
9.8 Funding Need
Funding_Need (€) = Total_Investments (€) - Available_Cash (€) - Cash_Flow (€)
9.9 Use of Raised Funds
Total_Use_of_Funds (€) = Sum of all fund utilization items:
- Product_development_POC_MVP
- Marketing_customer_acquisition
- Team_strengthening_recruitment
- Structure_administrative_fees
10. Key Performance Indicators (KPIs)
10.1 Customer Acquisition Cost (CAC)
CAC (€) = Marketing_Costs (€) / Number_of_New_Customers
10.2 Lifetime Value (LTV)
LTV (€) = Average_Revenue_per_Customer (€) × Average_Customer_Lifespan (years)
10.3 Break-even Point
Break_even_days = Fixed_Costs (€) / (Daily_Revenue (€/day) - Daily_Variable_Costs (€/day))
10.4 Break-even Point (Alternative)
Break_even_days = Fixed_Costs (€) / Daily_Gross_Margin (€/day)
11. Service Pricing Calculations
11.1 Service Pricing per Module per Year
Service_price_per_module_per_year (€) = Base_price (€) × Module_multiplier
11.2 Service Pricing over 10 Years
Service_price_10_years (€) = Service_price_per_module_per_year (€) × Number_of_modules × 10
11.3 First Year Prototype Pricing
First_year_price (€) = Service_price_per_module_per_year (€) × Prototype_discount_factor
Parameter: Prototype_discount_factor: Typically 0.5-0.8 (50-80% of standard price)
12. Conversion Factors
12.1 Energy Conversions
1 kW.h = 3600 kJ
1 kJ = 1/3600 kW.h
12.2 Carbon Conversions
1 tC (tonne of carbon) = 3.67 tCO₂e (tonnes of CO₂ equivalent)
1 tCO₂e = 1/3.67 tC ≈ 0.272 tC
12.3 Time Conversions
1 day = 24 hours
1 year = 365 days (or 366 for leap years)
12.4 Mass Conversions
1 tonne (t) = 1000 kg
1 kg = 0.001 t
13. Processing Efficiency Factors
13.1 Anaerobic Digestion Efficiency
Methane_efficiency = Actual_methane_production / Theoretical_methane_production
Typical range: 0.70 - 0.90 (70-90%)
13.2 Electrical Conversion Efficiency
Electrical_efficiency = Electrical_power_output / Energy_input
Typical range: 0.35 - 0.45 (35-45% for CHP systems)
13.3 Solar Panel Efficiency
Solar_panel_efficiency = Electrical_power_output / (Solar_irradiance × Panel_area)
Typical range: 0.15 - 0.22 (15-22%)
14. Water Balance Calculations
14.1 Water Input from Waste
Water_input (t/day) = Waste_quantity (t/day) × Water_percentage (%)
14.2 Water Consumption in Processes
Water_consumption (t/day) = Sum of water used in:
- Mesophilic_digestion
- Drying_process (evaporation)
- Bioremediation
- Thermophilic_digestion
- Composting
- Water wall cooling (evaporation)
14.3 Water from Spirulina Cycle
Spirulina_cycle_duration = 21 days
Spirulina_cycles_per_day = 1 / 21 = 0.0476 cycles/day
Water_from_spirulina (t/day) = Spirulina_cycle_water_output (t/cycle) × Spirulina_cycles_per_day
Spirulina Cycle Management:
- Spirulina culture: 21 days cycle
- After 21 days: Water returns to thermophilic anaerobic digestion
- Water output from spirulina: Depends on culture volume and evaporation
14.4 Water Evaporation
Water_evaporation (t/day) = Water_wall_surface (m²) × Evaporation_rate (m/day) × Water_density (t/m³)
Parameters:
- Evaporation_rate: Depends on temperature, humidity, wind (typically 0.001-0.01 m/day)
- Water_density: 1 t/m³
14.5 Net Water Output
Net_water_output (t/day) = Water_input (t/day) - Water_consumption (t/day) - Water_evaporation (t/day) + Water_from_spirulina (t/day)
15. Module and Container Calculations
15.1 Modules per Year
Modules_per_year = Total_modules / Project_duration (years)
15.2 Containers per Module
Containers_per_module = 4 (fixed: mesophilic, drying/bioremediation, thermophilic/composting, water/spirulina)
15.3 Total Container Capacity
Total_container_capacity = Number_of_modules × Containers_per_module × Container_capacity
Notes on Formula Display
All formulas must be displayed with:
- Monospace font (JetBrains Mono, Fira Code, or Courier New)
- Clear variable names with units
- Parameter values shown explicitly
- Calculation steps when applicable
- Input values used in the calculation
- Result with appropriate units
Formula Validation Rules
- All input values must be positive (where applicable)
- Division by zero must be prevented
- Unit conversions must be consistent
- Efficiency factors must be between 0 and 1
- Percentages must be between 0 and 100
- Time values must be positive
- Mass/volume values must be positive