**Motivations :** * Create a complete simulator for 4NK Waste & Water modular waste treatment infrastructure * Implement frontend-only application with client-side data persistence * Provide seed data for wastes and natural regulators from specifications **Root causes :** * Need for a simulation tool to configure and manage waste treatment projects * Requirement for localhost-only access with persistent client-side storage * Need for initial seed data to bootstrap the application **Correctifs :** * Implemented authentication system with AuthContext * Fixed login/logout functionality with proper state management * Created placeholder pages for all routes **Evolutions :** * Complete application structure with React, TypeScript, and Vite * Seed data for 9 waste types and 52 natural regulators * Settings page with import/export and seed data loading functionality * Configuration pages for wastes and regulators with CRUD operations * Project management pages structure * Business plan and yields pages placeholders * Comprehensive UI/UX design system (dark mode only) * Navigation system with sidebar and header **Page affectées :** * All pages: Login, Dashboard, Waste Configuration, Regulators Configuration, Services Configuration * Project pages: Project List, Project Configuration, Treatment Sites, Waste Sites, Investors, Administrative Procedures * Analysis pages: Yields, Business Plan * Utility pages: Settings, Help * Components: Layout, Sidebar, Header, base components (Button, Input, Select, Card, Badge, Table) * Utils: Storage, seed data, formatters, validators, constants * Types: Complete TypeScript definitions for all entities
508 lines
14 KiB
Markdown
508 lines
14 KiB
Markdown
# 4NK Waste & Water - Complete Calculation Formulas Reference
|
||
|
||
## 1. Infrastructure Capacity Calculations
|
||
|
||
### 1.1 Daily Processing Capacity
|
||
```
|
||
Daily_processing_capacity (T/day) = Module_capacity (T) × Number_of_modules
|
||
Daily_processing_capacity = 67T × 21 = 1,407T/day
|
||
```
|
||
|
||
### 1.2 Water Content Calculation
|
||
```
|
||
Water_content (T) = Total_waste (T) × Water_percentage (%)
|
||
Water_content = 67T × 75% = 50.25T water per module
|
||
```
|
||
|
||
### 1.3 Total Containers
|
||
```
|
||
Total_containers = Number_of_modules × Containers_per_module
|
||
Total_containers = 21 × 4 = 84 containers
|
||
```
|
||
|
||
## 2. Processing Time Calculations
|
||
|
||
### 2.1 Mesophilic Digestion Duration
|
||
```
|
||
Mesophilic_duration (days) = Hygienization_duration + Additional_days
|
||
Mesophilic_duration = 18 days + 3 days = 21 days
|
||
```
|
||
|
||
### 2.2 Drying and Bioremediation Duration
|
||
```
|
||
Drying_bioremediation_duration (days) = Drying_duration + (Bioremediation_phases × Phase_duration)
|
||
Drying_bioremediation_duration = 21 days + (3 phases × 21 days) = 84 days (variable)
|
||
```
|
||
|
||
### 2.3 Thermophilic Digestion and Composting Duration
|
||
```
|
||
Thermophilic_composting_duration (days) = Thermophilic_duration + Composting_duration
|
||
Thermophilic_composting_duration = 18 days + 3 days = 21 days
|
||
```
|
||
|
||
### 2.4 Spirulina Cycle Duration
|
||
```
|
||
Spirulina_cycle_duration (hours) = 72 hours
|
||
Spirulina_cycle_duration (days) = 72 / 24 = 3 days
|
||
```
|
||
|
||
## 3. Methane Production Calculations
|
||
|
||
### 3.1 Dry Matter Calculation (VS - Volatile Solids)
|
||
```
|
||
Dry_matter (kg VS) = Waste_quantity (kg) × (1 - Water_percentage (%))
|
||
Dry_matter_percentage (%) = 100% - Water_percentage (%)
|
||
```
|
||
|
||
**Example**:
|
||
- Waste quantity: 67,000 kg (67T)
|
||
- Water percentage: 75%
|
||
- Dry matter: 67,000 × (1 - 0.75) = 67,000 × 0.25 = 16,750 kg VS
|
||
- Dry matter percentage: 100% - 75% = 25%
|
||
|
||
### 3.2 Methane Production from BMP
|
||
```
|
||
Methane_production (m³/day) = BMP (Nm³ CH₄/kg VS) × Dry_matter (kg VS/day) × Efficiency_factor
|
||
```
|
||
|
||
**Parameters**:
|
||
- BMP: Biochemical Methane Potential (Nm³ CH₄/kg VS) - varies by waste type
|
||
- Dry_matter: Calculated from waste quantity and water percentage
|
||
- Efficiency_factor: Processing efficiency (typically 0.7-0.9)
|
||
|
||
### 3.3 Origin Units to Methane Conversion
|
||
```
|
||
Methane_per_1000m³ = Number_of_origin_units × Conversion_factor
|
||
```
|
||
**Parameter**: Number of origin units to produce 1000m³ of methane (varies by waste origin)
|
||
|
||
## 4. Gas Production Calculations
|
||
|
||
### 4.1 Biogas Composition
|
||
```
|
||
Biogas_total (m³/day) = Methane_production (m³/day) / Methane_percentage_in_biogas
|
||
```
|
||
|
||
**Biogas Composition**:
|
||
- Methane (CH₄): 40% of biogas
|
||
- CO₂: 60% of biogas
|
||
|
||
### 4.2 Methane from Biogas
|
||
```
|
||
Methane_production (m³/day) = Biogas_total (m³/day) × 0.40
|
||
```
|
||
|
||
### 4.3 CO₂ Production from Biogas
|
||
```
|
||
CO2_production (m³/day) = Biogas_total (m³/day) × 0.60
|
||
```
|
||
|
||
**Alternative calculation**:
|
||
```
|
||
CO2_production (m³/day) = Methane_production (m³/day) × (0.60 / 0.40)
|
||
CO2_production (m³/day) = Methane_production (m³/day) × 1.5
|
||
```
|
||
|
||
### 4.4 Total Gas Production
|
||
```
|
||
Total_gas_production (m³/day) = Methane_production (m³/day) + CO2_production (m³/day)
|
||
Total_gas_production (m³/day) = Biogas_total (m³/day)
|
||
```
|
||
|
||
## 5. Energy Calculations
|
||
|
||
### 5.1 Heat Energy from Biogas
|
||
```
|
||
Heat_energy (kJ/day) = Methane_production (m³/day) × Methane_energy_content (kJ/m³) × Combustion_efficiency
|
||
```
|
||
**Parameters**:
|
||
- Methane_energy_content: 35,800 kJ/m³ (lower heating value)
|
||
- Combustion_efficiency: 0.90 (90%)
|
||
|
||
### 5.2 Heat Energy Conversion to kWh
|
||
```
|
||
Heat_energy (kW.h/day) = Heat_energy (kJ/day) / 3600
|
||
```
|
||
|
||
### 5.3 Electrical Power from Biogas Generator
|
||
```
|
||
Electrical_power_biogas (kW) = Methane_production (m³/day) × Methane_energy_content (kJ/m³) × Electrical_efficiency / (3600 × 24)
|
||
```
|
||
**Parameter**: Electrical_efficiency: 0.40 (40% for combined heat and power systems)
|
||
|
||
### 5.4 Electrical Power from Solar Panels
|
||
```
|
||
Electrical_power_solar (kW) = Solar_panel_surface (m²) × Solar_irradiance (kW/m²) × Panel_efficiency
|
||
```
|
||
**Parameters**:
|
||
- Solar_irradiance: Varies by location and season (typically 0.1-1.0 kW/m²)
|
||
- Panel_efficiency: Typically 0.15-0.22
|
||
|
||
### 5.5 Total Electrical Power
|
||
```
|
||
Total_electrical_power (kW) = Electrical_power_biogas (kW) + Electrical_power_solar (kW)
|
||
```
|
||
|
||
### 5.6 Module Electrical Consumption
|
||
```
|
||
Module_electrical_consumption (kW) = Sum of all equipment consumption:
|
||
- 1 pump (méthanisation): 0.5 kW
|
||
- 1 séchoir du gaz: 2.0 kW
|
||
- 1 compresseur: 3.0 kW
|
||
- 1 lampe UV-C × 12m: 0.3 kW
|
||
- 5 racloires électriques × 3: 1.5 kW
|
||
- 1 pompe (spiruline): 0.5 kW
|
||
- 5 × 12m LED de culture: 0.6 kW
|
||
- 3 pompes eau: 1.5 kW
|
||
- Capteurs: 0.1 kW
|
||
- 1 serveur: 0.2 kW
|
||
- 1 borne Starlink: 0.1 kW
|
||
- 1 tableau élec: 0.1 kW
|
||
- 1 convertisseur panneaux solaires: 0.1 kW
|
||
Total per module: ~10.5 kW
|
||
```
|
||
|
||
```
|
||
Total_modules_consumption (kW) = Module_electrical_consumption (kW) × Number_of_modules
|
||
Total_modules_consumption (kW) = 10.5 kW × Number_of_modules
|
||
```
|
||
|
||
### 5.7 Net Electrical Power
|
||
```
|
||
Net_electrical_power (kW) = Total_electrical_power (kW) - Total_modules_consumption (kW)
|
||
```
|
||
|
||
## 6. Bitcoin Mining Calculations
|
||
|
||
### 6.1 Number of Flex Miners
|
||
```
|
||
Number_of_flex_miners = Available_electrical_power (kW) / Power_per_miner (kW)
|
||
Number_of_flex_miners = Available_electrical_power (kW) / 2 kW
|
||
```
|
||
|
||
### 6.2 Bitcoin Production
|
||
```
|
||
Bitcoins_BTC_per_year = 79.2 × 0.0001525 / flex_miner
|
||
```
|
||
**Formula**: `BTC/year = 79.2 × 0.0001525 / number_of_flex_miners`
|
||
|
||
**Parameters**:
|
||
- 79.2: Constant factor
|
||
- 0.0001525: BTC per flex miner factor
|
||
- flex_miner: Number of 4NK flex miners (2kW each)
|
||
|
||
### 6.3 Bitcoin Value
|
||
```
|
||
Bitcoin_value (€) = Bitcoin_quantity (BTC) × Bitcoin_price (€/BTC)
|
||
```
|
||
**Parameter**: Bitcoin_price = 100,000 €/BTC
|
||
|
||
## 7. Material Output Calculations
|
||
|
||
### 7.1 Water Output
|
||
```
|
||
Water_output (t/day) = Water_input (t/day) - Water_consumed_in_processes (t/day) + Water_from_spirulina (t/day)
|
||
```
|
||
|
||
**Water Input**:
|
||
```
|
||
Water_input (t/day) = Waste_quantity (t/day) × Water_percentage (%)
|
||
Water_input = 67T × 75% = 50.25T water per module per day
|
||
```
|
||
|
||
### 7.2 Fertilizer Production
|
||
```
|
||
Fertilizer_output (t/day) = Composting_output (t/day) × Fertilizer_yield_factor
|
||
```
|
||
**Parameter**: Fertilizer_yield_factor: 1.0 (100% - all compost becomes standardized fertilizer)
|
||
|
||
## 8. Valorization Calculations
|
||
|
||
### 8.1 Waste Treatment Valorization
|
||
```
|
||
Waste_treatment_valorization (€/year) = Waste_quantity (t/year) × 100 €/t
|
||
```
|
||
**Parameter**: 100 €/t
|
||
|
||
### 8.2 Fertilizer Valorization
|
||
```
|
||
Fertilizer_valorization (€/year) = Fertilizer_quantity (t/year) × 215 €/t
|
||
```
|
||
**Parameter**: 215 €/t
|
||
|
||
### 8.3 Heat Valorization
|
||
```
|
||
Heat_valorization (€/year) = Heat_quantity (t/year) × 0.12 €/t
|
||
```
|
||
**Parameter**: 0.12 €/t
|
||
|
||
### 8.4 Carbon Equivalent - Burned Methane (CH₄)
|
||
```
|
||
CH4_carbon_valorization (€/year) = CH4_quantity (tCO₂e/year) × 172 €/tCO₂e
|
||
```
|
||
**Parameters**:
|
||
- 630 €/tC ≈ 172 €/tCO₂e
|
||
- Conversion: 1 tC = 3.67 tCO₂e
|
||
- Formula: `172 = 630 / 3.67`
|
||
|
||
### 8.5 Carbon Equivalent - Sequestered CO₂
|
||
```
|
||
CO2_carbon_valorization (€/year) = CO2_sequestered (tCO₂e/year) × 27 €/tCO₂e
|
||
```
|
||
**Parameters**:
|
||
- 100 €/tC ≈ 27 €/tCO₂e
|
||
- Conversion: 1 tC = 3.67 tCO₂e
|
||
- Formula: `27 = 100 / 3.67`
|
||
|
||
### 8.6 Carbon Equivalent - Avoided Electricity Consumption
|
||
```
|
||
Energy_carbon_valorization (€/year) = Electricity_avoided (kW/year) × 0.12 €/kW
|
||
```
|
||
**Parameter**: 0.12 €/kW
|
||
|
||
### 8.7 Land Valorization (Brownfield)
|
||
```
|
||
Land_valorization (€) = Brownfield_area (m²) × Valorization_rate (€/m²)
|
||
```
|
||
**Parameter**: 4000 m² brownfield (valorization rate configurable)
|
||
|
||
## 9. Financial Calculations
|
||
|
||
### 9.1 Total Revenues
|
||
```
|
||
Total_Revenues (€/year) = Sum of all revenue items:
|
||
- Raw_rental
|
||
- Biological_waste_treatment_service
|
||
- Bitcoin_management_service
|
||
- Provision_of_standardized_fertilizers_service
|
||
- Provision_of_waste_heat_service
|
||
- Provision_of_carbon_credit_indices_service
|
||
- Brownfield_redevelopment_service
|
||
- Transport_service
|
||
- Commercial_partnerships
|
||
- Other_revenues
|
||
```
|
||
|
||
### 9.2 Total Variable Costs
|
||
```
|
||
Total_Variable_Costs (€/year) = Sum of all variable cost items:
|
||
- Rental_and_services
|
||
- Commissions_intermediaries_import
|
||
- Other_variable_costs
|
||
- Transport
|
||
```
|
||
|
||
### 9.3 Gross Margin
|
||
```
|
||
Gross_Margin (€/year) = Total_Revenues (€/year) - Total_Variable_Costs (€/year)
|
||
```
|
||
|
||
### 9.4 Total Fixed Costs (OPEX)
|
||
```
|
||
Total_Fixed_Costs (€/year) = Sum of all fixed cost items:
|
||
- Salaries_and_social_charges
|
||
- Marketing_communication_expenses
|
||
- R&D_product_development
|
||
- Administrative_legal_fees
|
||
- Other_general_expenses
|
||
```
|
||
|
||
### 9.5 Operating Result (EBITDA)
|
||
```
|
||
EBITDA (€/year) = Gross_Margin (€/year) - Total_Fixed_Costs (€/year)
|
||
```
|
||
|
||
### 9.6 Cash Flow
|
||
```
|
||
Cash_Flow (€/year) = EBITDA (€/year) - Non_cash_adjustments (€/year) - Working_capital_changes (€/year)
|
||
```
|
||
|
||
### 9.7 Total Investments (CAPEX)
|
||
```
|
||
Total_Investments (€) = Sum of all investment items:
|
||
- Equipment_machinery
|
||
- Technology_development
|
||
- Patents_IP
|
||
```
|
||
|
||
### 9.8 Funding Need
|
||
```
|
||
Funding_Need (€) = Total_Investments (€) - Available_Cash (€) - Cash_Flow (€)
|
||
```
|
||
|
||
### 9.9 Use of Raised Funds
|
||
```
|
||
Total_Use_of_Funds (€) = Sum of all fund utilization items:
|
||
- Product_development_POC_MVP
|
||
- Marketing_customer_acquisition
|
||
- Team_strengthening_recruitment
|
||
- Structure_administrative_fees
|
||
```
|
||
|
||
## 10. Key Performance Indicators (KPIs)
|
||
|
||
### 10.1 Customer Acquisition Cost (CAC)
|
||
```
|
||
CAC (€) = Marketing_Costs (€) / Number_of_New_Customers
|
||
```
|
||
|
||
### 10.2 Lifetime Value (LTV)
|
||
```
|
||
LTV (€) = Average_Revenue_per_Customer (€) × Average_Customer_Lifespan (years)
|
||
```
|
||
|
||
### 10.3 Break-even Point
|
||
```
|
||
Break_even_days = Fixed_Costs (€) / (Daily_Revenue (€/day) - Daily_Variable_Costs (€/day))
|
||
```
|
||
|
||
### 10.4 Break-even Point (Alternative)
|
||
```
|
||
Break_even_days = Fixed_Costs (€) / Daily_Gross_Margin (€/day)
|
||
```
|
||
|
||
## 11. Service Pricing Calculations
|
||
|
||
### 11.1 Service Pricing per Module per Year
|
||
```
|
||
Service_price_per_module_per_year (€) = Base_price (€) × Module_multiplier
|
||
```
|
||
|
||
### 11.2 Service Pricing over 10 Years
|
||
```
|
||
Service_price_10_years (€) = Service_price_per_module_per_year (€) × Number_of_modules × 10
|
||
```
|
||
|
||
### 11.3 First Year Prototype Pricing
|
||
```
|
||
First_year_price (€) = Service_price_per_module_per_year (€) × Prototype_discount_factor
|
||
```
|
||
**Parameter**: Prototype_discount_factor: Typically 0.5-0.8 (50-80% of standard price)
|
||
|
||
## 12. Conversion Factors
|
||
|
||
### 12.1 Energy Conversions
|
||
```
|
||
1 kW.h = 3600 kJ
|
||
1 kJ = 1/3600 kW.h
|
||
```
|
||
|
||
### 12.2 Carbon Conversions
|
||
```
|
||
1 tC (tonne of carbon) = 3.67 tCO₂e (tonnes of CO₂ equivalent)
|
||
1 tCO₂e = 1/3.67 tC ≈ 0.272 tC
|
||
```
|
||
|
||
### 12.3 Time Conversions
|
||
```
|
||
1 day = 24 hours
|
||
1 year = 365 days (or 366 for leap years)
|
||
```
|
||
|
||
### 12.4 Mass Conversions
|
||
```
|
||
1 tonne (t) = 1000 kg
|
||
1 kg = 0.001 t
|
||
```
|
||
|
||
## 13. Processing Efficiency Factors
|
||
|
||
### 13.1 Anaerobic Digestion Efficiency
|
||
```
|
||
Methane_efficiency = Actual_methane_production / Theoretical_methane_production
|
||
```
|
||
**Typical range**: 0.70 - 0.90 (70-90%)
|
||
|
||
### 13.2 Electrical Conversion Efficiency
|
||
```
|
||
Electrical_efficiency = Electrical_power_output / Energy_input
|
||
```
|
||
**Typical range**: 0.35 - 0.45 (35-45% for CHP systems)
|
||
|
||
### 13.3 Solar Panel Efficiency
|
||
```
|
||
Solar_panel_efficiency = Electrical_power_output / (Solar_irradiance × Panel_area)
|
||
```
|
||
**Typical range**: 0.15 - 0.22 (15-22%)
|
||
|
||
## 14. Water Balance Calculations
|
||
|
||
### 14.1 Water Input from Waste
|
||
```
|
||
Water_input (t/day) = Waste_quantity (t/day) × Water_percentage (%)
|
||
```
|
||
|
||
### 14.2 Water Consumption in Processes
|
||
```
|
||
Water_consumption (t/day) = Sum of water used in:
|
||
- Mesophilic_digestion
|
||
- Drying_process (evaporation)
|
||
- Bioremediation
|
||
- Thermophilic_digestion
|
||
- Composting
|
||
- Water wall cooling (evaporation)
|
||
```
|
||
|
||
### 14.3 Water from Spirulina Cycle
|
||
```
|
||
Spirulina_cycle_duration = 21 days
|
||
Spirulina_cycles_per_day = 1 / 21 = 0.0476 cycles/day
|
||
|
||
Water_from_spirulina (t/day) = Spirulina_cycle_water_output (t/cycle) × Spirulina_cycles_per_day
|
||
```
|
||
|
||
**Spirulina Cycle Management**:
|
||
- Spirulina culture: 21 days cycle
|
||
- After 21 days: Water returns to thermophilic anaerobic digestion
|
||
- Water output from spirulina: Depends on culture volume and evaporation
|
||
|
||
### 14.4 Water Evaporation
|
||
```
|
||
Water_evaporation (t/day) = Water_wall_surface (m²) × Evaporation_rate (m/day) × Water_density (t/m³)
|
||
```
|
||
**Parameters**:
|
||
- Evaporation_rate: Depends on temperature, humidity, wind (typically 0.001-0.01 m/day)
|
||
- Water_density: 1 t/m³
|
||
|
||
### 14.5 Net Water Output
|
||
```
|
||
Net_water_output (t/day) = Water_input (t/day) - Water_consumption (t/day) - Water_evaporation (t/day) + Water_from_spirulina (t/day)
|
||
```
|
||
|
||
## 15. Module and Container Calculations
|
||
|
||
### 15.1 Modules per Year
|
||
```
|
||
Modules_per_year = Total_modules / Project_duration (years)
|
||
```
|
||
|
||
### 15.2 Containers per Module
|
||
```
|
||
Containers_per_module = 4 (fixed: mesophilic, drying/bioremediation, thermophilic/composting, water/spirulina)
|
||
```
|
||
|
||
### 15.3 Total Container Capacity
|
||
```
|
||
Total_container_capacity = Number_of_modules × Containers_per_module × Container_capacity
|
||
```
|
||
|
||
## Notes on Formula Display
|
||
|
||
All formulas must be displayed with:
|
||
- **Monospace font** (JetBrains Mono, Fira Code, or Courier New)
|
||
- **Clear variable names** with units
|
||
- **Parameter values** shown explicitly
|
||
- **Calculation steps** when applicable
|
||
- **Input values** used in the calculation
|
||
- **Result** with appropriate units
|
||
|
||
## Formula Validation Rules
|
||
|
||
- All input values must be positive (where applicable)
|
||
- Division by zero must be prevented
|
||
- Unit conversions must be consistent
|
||
- Efficiency factors must be between 0 and 1
|
||
- Percentages must be between 0 and 100
|
||
- Time values must be positive
|
||
- Mass/volume values must be positive
|