sdk_common/src/process.rs
2025-08-27 13:57:40 +02:00

780 lines
28 KiB
Rust

use std::{
collections::HashMap,
sync::{Mutex, MutexGuard, OnceLock},
};
use serde::{Deserialize, Serialize};
use serde_json::{Map, Value};
use sp_client::bitcoin::OutPoint;
use crate::{
pcd::{AnkPcdHash, Pcd, RoleDefinition},
prd::{Prd, PrdType},
signature::Proof,
MutexExt,
};
#[derive(Debug, Clone, Default, PartialEq, Serialize, Deserialize)]
pub struct ProcessState {
pub commited_in: OutPoint,
pub pcd_commitment: Value, // If we can't modify a field, we just copy the previous value
pub encrypted_pcd: Value, // Some fields may be clear, if the owner of the process decides so
pub keys: Map<String, Value>, // We may not always have all the keys
pub validation_tokens: Vec<Proof>, // Signature of the hash of the encrypted pcd tagged with some decision like "yes" or "no"
}
impl ProcessState {
pub fn decrypt_pcd(&self) -> Value {
// TODO add real error management
let mut fields2plain = Map::new();
let _ = self.encrypted_pcd.decrypt_fields(&self.keys, &mut fields2plain);
Value::Object(fields2plain)
}
fn compute_modified_fields(&self, previous_state: Option<&ProcessState>) -> Vec<String> {
let new_state = &self.encrypted_pcd;
// Ensure the new state is a JSON object
let new_state_obj = new_state
.as_object()
.expect("New state should be a JSON object");
if let Some(prev_state) = previous_state {
// Previous state exists; compute differences
let previous_state_obj = prev_state
.encrypted_pcd
.as_object()
.expect("Previous state should be a JSON object");
// Compute modified fields by comparing with previous state
new_state_obj
.iter()
.filter_map(|(key, value)| {
let previous_value = previous_state_obj.get(key);
if previous_value.is_none() || value != previous_value.unwrap() {
Some(key.clone())
} else {
None
}
})
.collect()
} else {
// No previous state; all fields are considered modified
new_state_obj.keys().cloned().collect()
}
}
pub fn is_valid(&self, previous_state: Option<&ProcessState>) -> anyhow::Result<()> {
if self.validation_tokens.is_empty() {
return Err(anyhow::anyhow!(
"Can't validate a state with no proofs attached"
));
}
// Compute modified fields
let modified_fields = self.compute_modified_fields(previous_state);
if modified_fields.is_empty() {
return Err(anyhow::anyhow!("State is identical to the previous state"));
}
println!("modified fields: {:?}", modified_fields);
// Compute the hash of the new state
let new_state_hash = AnkPcdHash::from_value(&self.encrypted_pcd);
let mut fields2plains = Map::new();
self.encrypted_pcd
.decrypt_fields(&self.keys, &mut fields2plains)?;
let mut roles2rules: HashMap<String, RoleDefinition> = HashMap::new();
if let Some(roles) = fields2plains.get("roles") {
if let Some(roles_map) = roles.as_object() {
for (role, conditions) in roles_map {
let role_def = serde_json::from_value::<RoleDefinition>(conditions.clone())?;
roles2rules.insert(role.to_string(), role_def);
}
} else {
return Err(anyhow::anyhow!("Roles is not an object"));
}
} else {
return Err(anyhow::anyhow!("Missing roles in the encrypted pcd"));
}
// Check if each modified field satisfies at least one applicable rule across all roles
let all_fields_validated = modified_fields.iter().all(|field| {
// Collect applicable rules from all roles for the current field
let applicable_roles: Vec<RoleDefinition> = roles2rules
.iter()
.filter_map(|(_, role_def)| {
let mut filtered_role_def = role_def.clone();
let rules = filtered_role_def.get_applicable_rules(field);
filtered_role_def.validation_rules =
rules.into_iter().map(|r| r.clone()).collect();
if filtered_role_def.validation_rules.is_empty() {
None
} else {
Some(filtered_role_def)
}
})
.collect();
if applicable_roles.is_empty() {
return false; // No rules apply to this field, consider it invalid
}
applicable_roles.into_iter().any(|role_def| {
role_def.validation_rules.iter().any(|rule| {
rule.is_satisfied(
field,
new_state_hash.clone(),
&self.validation_tokens,
&role_def.members,
)
})
})
});
if all_fields_validated {
Ok(())
} else {
Err(anyhow::anyhow!("Not enough valid proofs"))
}
}
pub fn is_empty(&self) -> bool {
self.encrypted_pcd == Value::Null ||
self.pcd_commitment == Value::Null
}
}
/// A process is basically a succession of states
/// If a process has nothing to do with us, impending_requests will be empty
/// The latest state MUST be an empty state with only the commited_in field set at the last unspent outpoint
#[derive(Debug, Default, Clone, PartialEq, Serialize, Deserialize)]
pub struct Process {
states: Vec<ProcessState>,
impending_requests: Vec<Prd>,
}
impl Process {
pub fn new(
commited_in: OutPoint
) -> Self {
let empty_state = ProcessState {
commited_in,
..Default::default()
};
Self {
states: vec![empty_state],
impending_requests: vec![],
}
}
pub fn get_last_unspent_outpoint(&self) -> anyhow::Result<OutPoint> {
if self.states.is_empty() { return Err(anyhow::Error::msg("Empty Process")); }
let last_state = self.states.last().unwrap();
Ok(last_state.commited_in)
}
pub fn update_states_tip(&mut self, new_commitment: OutPoint) -> anyhow::Result<()> {
if self.states.is_empty() { return Err(anyhow::Error::msg("Empty Process")); }
let last_value = self.states.last().unwrap();
if !last_value.is_empty() {
return Err(anyhow::Error::msg("Last value should be empty"));
}
if last_value.commited_in == new_commitment {
return Err(anyhow::Error::msg("new_commitment is the same than existing tip"));
}
// Before updating we make sure that we only have one concurrent state
let concurrent_states = self.get_latest_concurrent_states()?;
if concurrent_states.len() != 2 {
return Err(anyhow::Error::msg("We must have exactly one state for the current tip"));
}
// Replace the existing tip
let new_tip = ProcessState {
commited_in: new_commitment,
..Default::default()
};
let _ = self.states.pop().unwrap();
self.states.push(new_tip);
Ok(())
}
/// We want to insert a new state that would be commited by the last UTXO
/// The new state *must* have the same commited_in than the last empty one
/// We want to always keep an empty state with only the latest unspent commited_in value at the last position
pub fn insert_concurrent_state(&mut self, new_state: ProcessState) -> anyhow::Result<()> {
if self.states.is_empty() { return Err(anyhow::Error::msg("Empty Process")); }
let last_value = self.states.last().unwrap();
if !last_value.is_empty() {
return Err(anyhow::Error::msg("Last value should be empty"));
}
if last_value.commited_in != new_state.commited_in {
return Err(anyhow::Error::msg("A concurrent state must have the same commited in than the tip of the states"));
}
let empty_state = self.states.pop().unwrap();
self.states.push(new_state);
// We always keep an empty state at the end
self.states.push(empty_state);
Ok(())
}
pub fn get_state_at(&self, index: usize) -> Option<&ProcessState> {
self.states.get(index)
}
pub fn get_state_at_mut(&mut self, index: usize) -> Option<&mut ProcessState> {
self.states.get_mut(index)
}
pub fn get_latest_state(&self) -> Option<&ProcessState> {
self.states.last()
}
pub fn get_latest_state_mut(&mut self) -> Option<&mut ProcessState> {
self.states.last_mut()
}
pub fn get_previous_state(&self, current_state: &ProcessState) -> Option<&ProcessState> {
// Find the index of the current state
let current_index = self
.states
.iter()
.position(|state| state == current_state)?;
// Check if there is a previous state
if current_index > 0 {
// Create a new Process with the previous state
let previous_state = self.get_state_at(current_index - 1).unwrap();
Some(&previous_state)
} else {
None // No previous state exists
}
}
pub fn get_state_for_commitments_root(&mut self, merkle_root: [u8; 32]) -> anyhow::Result<&mut ProcessState> {
if self.get_number_of_states() == 0 {
// This should never happen, but we better get rid of it now
return Err(anyhow::Error::msg("process is empty".to_owned()));
}
for p in self.get_latest_concurrent_states_mut()? {
if p.is_empty() {
continue;
}
let root = <Value as Pcd>::create_merkle_tree(&p.pcd_commitment).unwrap().root().unwrap();
if merkle_root == root {
return Ok(p);
}
}
return Err(anyhow::Error::msg("No state for this merkle root"));
}
/// This is useful when multiple unvalidated states are pending waiting for enough validations
/// It returns the latest state and all the previous states that have the same commited_in
/// It means that all the returned states are unvalidated and except for the one that get validated they will be pruned
pub fn get_latest_concurrent_states(&self) -> anyhow::Result<Vec<&ProcessState>> {
if self.get_number_of_states() == 0 {
// This should never happen, but we better get rid of it now
return Err(anyhow::Error::msg("process is empty".to_owned()));
}
let mut states = vec![];
let mut previous_commited_in = OutPoint::null();
// We iterate backwards until we find a state that has a different commited_in
for state in self.states.iter().rev() {
log::debug!("state: {:#?}", state);
if previous_commited_in == OutPoint::null() {
previous_commited_in = state.commited_in;
} else if previous_commited_in != state.commited_in {
break;
}
states.push(state);
}
Ok(states)
}
pub fn get_latest_concurrent_states_mut(&mut self) -> anyhow::Result<Vec<&mut ProcessState>> {
if self.get_number_of_states() == 0 {
// This should never happen, but we better get rid of it now
return Err(anyhow::Error::msg("process is empty".to_owned()));
}
let mut states = vec![];
let mut previous_commited_in = OutPoint::null();
// We iterate backwards until we find a state that has a different commited_in
for state in self.states.iter_mut().rev() {
if previous_commited_in == OutPoint::null() {
previous_commited_in = state.commited_in;
} else if previous_commited_in != state.commited_in {
break;
}
states.push(state);
}
Ok(states)
}
pub fn remove_all_concurrent_states(&mut self) -> anyhow::Result<Vec<ProcessState>> {
if self.get_number_of_states() == 0 {
// This should never happen, but we better get rid of it now
return Err(anyhow::Error::msg("process is empty".to_owned()));
}
let empty_state = self.states.pop().unwrap();
let last_commitment_outpoint = empty_state.commited_in;
let split_index = self.states.iter().position(|state| state.commited_in == last_commitment_outpoint).unwrap();
let removed = self.states.split_off(split_index);
// We make sure we always have an empty state at the end
self.states.push(empty_state);
Ok(removed)
}
pub fn get_latest_commited_state(&self) -> Option<&ProcessState> {
if self.states.is_empty() {
return None;
}
let last_state = self.states.last().unwrap();
debug_assert!(last_state.is_empty()); // Last state must always be empty
// We look for the last commited in before all the pending states
let latest_outpoint = last_state.commited_in;
return self
.states
.iter()
.rev()
.find(|s| s.commited_in != latest_outpoint);
}
pub fn insert_impending_request(&mut self, request: Prd) {
self.impending_requests.push(request);
}
pub fn get_impending_requests(&self) -> Vec<&Prd> {
self.impending_requests.iter().collect()
}
pub fn get_impending_requests_mut(&mut self) -> Vec<&mut Prd> {
self.impending_requests.iter_mut().collect()
}
pub fn prune_impending_requests(&mut self) {
self.impending_requests = self.impending_requests.clone().into_iter()
.filter(|r| r.prd_type != PrdType::None)
.collect();
}
pub fn get_state_index(&self, state: &ProcessState) -> Option<usize> {
// Get the commited_in value of the provided state
let target_commited_in = state.commited_in;
// Find the index of the first state with the same commited_in value
self.states
.iter()
.position(|s| s.commited_in == target_commited_in)
}
pub fn get_number_of_states(&self) -> usize {
self.states.len()
}
}
pub static CACHEDPROCESSES: OnceLock<Mutex<HashMap<OutPoint, Process>>> = OnceLock::new();
pub fn lock_processes() -> Result<MutexGuard<'static, HashMap<OutPoint, Process>>, anyhow::Error> {
CACHEDPROCESSES
.get_or_init(|| Mutex::new(HashMap::new()))
.lock_anyhow()
}
#[cfg(test)]
mod tests {
use std::str::FromStr;
use serde_json::json;
use sp_client::{
bitcoin::{secp256k1::SecretKey, Network}, silentpayments::utils::SilentPaymentAddress, spclient::{SpClient, SpWallet, SpendKey}
};
use crate::pcd::{Member, ValidationRule};
use crate::signature::{AnkValidationNoHash, AnkValidationYesHash};
use super::*;
fn create_alice_wallet() -> SpWallet {
SpWallet::new(
SpClient::new(
"default".to_owned(),
SecretKey::from_str(
"a67fb6bf5639efd0aeb19c1c584dd658bceda87660ef1088d4a29d2e77846973",
)
.unwrap(),
SpendKey::Secret(
SecretKey::from_str(
"a1e4e7947accf33567e716c9f4d186f26398660e36cf6d2e711af64b3518e65c",
)
.unwrap(),
),
None,
Network::Signet,
)
.unwrap(),
None,
vec![],
)
.unwrap()
}
fn create_bob_wallet() -> SpWallet {
SpWallet::new(
SpClient::new(
"default".to_owned(),
SecretKey::from_str(
"4d9f62b2340de3f0bafd671b78b19edcfded918c4106baefd34512f12f520e9b",
)
.unwrap(),
SpendKey::Secret(
SecretKey::from_str(
"dafb99602721577997a6fe3da54f86fd113b1b58f0c9a04783d486f87083a32e",
)
.unwrap(),
),
None,
Network::Signet,
)
.unwrap(),
None,
vec![],
)
.unwrap()
}
fn create_carol_wallet() -> SpWallet {
SpWallet::new(
SpClient::new(
"default".to_owned(),
SecretKey::from_str(
"e4a5906eaa1a7ab24d5fc8d9b600d47f79caa6511c056c111677b7a33e62c5e9",
)
.unwrap(),
SpendKey::Secret(
SecretKey::from_str(
"e4c282e14668af1435e39df78403a7b406a791e3c6e666295496a6a865ade162",
)
.unwrap(),
),
None,
Network::Signet,
)
.unwrap(),
None,
vec![],
)
.unwrap()
}
fn dummy_process_state() -> ProcessState {
let alice_wallet = create_alice_wallet();
let bob_wallet = create_bob_wallet();
let carol_wallet = create_carol_wallet();
let alice_address =
SilentPaymentAddress::try_from(alice_wallet.get_client().get_receiving_address())
.unwrap();
let bob_address =
SilentPaymentAddress::try_from(bob_wallet.get_client().get_receiving_address())
.unwrap();
let carol_address =
SilentPaymentAddress::try_from(carol_wallet.get_client().get_receiving_address())
.unwrap();
let alice_bob = Member::new(vec![alice_address, bob_address]).unwrap();
let carol = Member::new(vec![carol_address]).unwrap();
let validation_rule1 =
ValidationRule::new(1.0, vec!["field1".to_owned(), "roles".to_owned()], 0.5).unwrap();
let validation_rule2 = ValidationRule::new(1.0, vec!["field2".to_owned()], 0.5).unwrap();
let encrypted_pcd = json!({
"field1": "value1",
"field2": "value2",
"roles": {
"role1": {
"members": [alice_bob],
"validation_rules": [validation_rule1]
},
"role2": {
"members": [carol],
"validation_rules": [validation_rule2]
}
}
});
let outpoint = OutPoint::null();
let pcd_commitment = encrypted_pcd.hash_fields(outpoint).unwrap();
let mut fields2keys = Map::new();
let mut fields2cipher = Map::new();
// let field_to_encrypt: Vec<String> = encrypted_pcd.as_object().unwrap().keys().map(|k| k.clone()).collect();
let field_to_encrypt = vec!["field1".to_string(), "field2".to_string()];
encrypted_pcd
.encrypt_fields(&field_to_encrypt, &mut fields2keys, &mut fields2cipher)
.unwrap();
ProcessState {
commited_in: outpoint,
pcd_commitment: Value::Object(pcd_commitment),
encrypted_pcd,
keys: Map::new(),
validation_tokens: vec![],
}
}
fn add_validation_token(state: &mut ProcessState, signing_key: SecretKey, accept: bool) {
let pcd_hash = AnkPcdHash::from_value(&state.encrypted_pcd);
if accept {
let validation_hash = AnkValidationYesHash::from_commitment(pcd_hash);
let proof = Proof::new(
crate::signature::AnkHash::ValidationYes(validation_hash),
signing_key,
);
state.validation_tokens.push(proof);
} else {
let validation_hash = AnkValidationNoHash::from_commitment(pcd_hash);
let proof = Proof::new(
crate::signature::AnkHash::ValidationNo(validation_hash),
signing_key,
);
state.validation_tokens.push(proof);
}
}
#[test]
fn test_error_no_proofs() {
let state = dummy_process_state();
let result = state.is_valid(None);
assert!(result.is_err());
assert_eq!(
result.unwrap_err().to_string(),
"Can't validate a state with no proofs attached"
);
}
#[test]
fn test_error_identical_previous_state() {
let mut state = dummy_process_state();
// We sign with a random key
let signing_key =
SecretKey::from_str("39b2a765dc93e02da04a0e9300224b4f99fa7b83cfae49036dff58613fd3277c")
.unwrap();
add_validation_token(&mut state, signing_key, true);
let result = state.is_valid(Some(&state));
assert!(result.is_err());
assert_eq!(
result.unwrap_err().to_string(),
"State is identical to the previous state"
);
}
#[test]
/// We provide a proof signed with a key that is not the spending key for either alice or bob
fn test_error_invalid_proof() {
let mut state = dummy_process_state();
// We sign with a random key
let signing_key =
SecretKey::from_str("39b2a765dc93e02da04a0e9300224b4f99fa7b83cfae49036dff58613fd3277c")
.unwrap();
add_validation_token(&mut state, signing_key, true);
let result = state.is_valid(None);
assert!(result.is_err());
assert_eq!(result.unwrap_err().to_string(), "Not enough valid proofs");
}
#[test]
/// Carol signs alone for an init state
fn test_error_not_enough_signatures() {
let mut state = dummy_process_state();
// We sign with Carol key
let carol_key: SecretKey = create_carol_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
add_validation_token(&mut state, carol_key, true);
let result = state.is_valid(None);
assert!(result.is_err());
assert_eq!(result.unwrap_err().to_string(), "Not enough valid proofs");
}
#[test]
/// Alice signs alone for her fields in an init state
fn test_valid_just_enough_signatures() {
let mut state = dummy_process_state();
// We sign with Alice and Carol keys
let alice_key: SecretKey = create_alice_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
let carol_key: SecretKey = create_carol_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
add_validation_token(&mut state, alice_key, true);
add_validation_token(&mut state, carol_key, true);
let result = state.is_valid(None);
assert!(result.is_ok());
}
#[test]
/// everyone signs for everything
fn test_valid_all_signatures() {
let mut state = dummy_process_state();
let alice_key: SecretKey = create_alice_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
let bob_key: SecretKey = create_bob_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
let carol_key: SecretKey = create_carol_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
add_validation_token(&mut state, alice_key, true);
add_validation_token(&mut state, bob_key, true);
add_validation_token(&mut state, carol_key, true);
let result = state.is_valid(None);
assert!(result.is_ok());
}
#[test]
/// Carol refuses change for her part
fn test_error_carol_votes_no() {
let mut state = dummy_process_state();
let alice_key: SecretKey = create_alice_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
let bob_key: SecretKey = create_bob_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
let carol_key: SecretKey = create_carol_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
add_validation_token(&mut state, alice_key, true);
add_validation_token(&mut state, bob_key, true);
add_validation_token(&mut state, carol_key, false);
let result = state.is_valid(None);
assert!(result.is_err());
assert_eq!(result.unwrap_err().to_string(), "Not enough valid proofs");
}
#[test]
/// Bob refuses change for his part, but Alice is enough to reach quorum
fn test_valid_bob_votes_no() {
let mut state = dummy_process_state();
let alice_key: SecretKey = create_alice_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
let bob_key: SecretKey = create_bob_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
let carol_key: SecretKey = create_carol_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
add_validation_token(&mut state, alice_key, true);
add_validation_token(&mut state, bob_key, false);
add_validation_token(&mut state, carol_key, true);
let result = state.is_valid(None);
assert!(result.is_ok());
}
#[test]
/// Everyone signs, and we have a previous state
fn test_valid_everyone_signs_with_prev_state() {
let state = dummy_process_state();
let mut new_state = state.clone();
if let Value::Object(ref mut map) = new_state.encrypted_pcd {
// Modify the field
map.insert("field1".to_string(), Value::String("new_value1".to_owned()));
} else {
// Handle the case where encrypted_pcd is not an object
panic!("encrypted_pcd is not a JSON object.");
}
let alice_key: SecretKey = create_alice_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
let bob_key: SecretKey = create_bob_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
let carol_key: SecretKey = create_carol_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
add_validation_token(&mut new_state, alice_key, true);
add_validation_token(&mut new_state, bob_key, true);
add_validation_token(&mut new_state, carol_key, true);
let result = new_state.is_valid(Some(&state));
assert!(result.is_ok());
}
#[test]
/// Only Carol signs, but she doesn't have modification rights on modified field
fn test_error_not_right_signatures_with_prev_state() {
let state = dummy_process_state();
let mut new_state = state.clone();
if let Value::Object(ref mut map) = new_state.encrypted_pcd {
// Modify the field
map.insert("field1".to_string(), Value::String("new_value1".to_owned()));
} else {
// Handle the case where encrypted_pcd is not an object
panic!("encrypted_pcd is not a JSON object.");
}
let carol_key: SecretKey = create_carol_wallet()
.get_client()
.get_spend_key()
.try_into()
.unwrap();
add_validation_token(&mut new_state, carol_key, true);
let result = new_state.is_valid(Some(&state));
assert!(result.is_err());
assert_eq!(result.unwrap_err().to_string(), "Not enough valid proofs");
}
}