sdk_common/src/process.rs
2025-07-15 11:26:56 +02:00

1461 lines
55 KiB
Rust

use anyhow::Result;
use std::collections::{BTreeMap, HashMap, HashSet};
use std::str::FromStr;
use std::sync::{Mutex, MutexGuard, OnceLock};
use serde::{Deserialize, Serialize};
use sp_client::{
bitcoin::{OutPoint, Transaction},
silentpayments::SilentPaymentAddress,
};
use tsify::Tsify;
use crate::{
pcd::{Member, Pcd, PcdCommitments, RoleDefinition, Roles, ValidationRule},
serialization::{deserialize_hex, hex_array_btree, serialize_hex, OutPointMemberMap},
signature::{AnkHash, AnkValidationNoHash, AnkValidationYesHash, Proof},
MutexExt, SpecialRoles, APOPHIS, PAIREDADDRESSES, PAIRING,
};
#[derive(Debug, Clone, Default, PartialEq, Serialize, Deserialize, Tsify)]
#[tsify(into_wasm_abi, from_wasm_abi)]
pub struct ProcessState {
pub commited_in: OutPoint,
#[tsify(type = "Record<string, string>")]
pub pcd_commitment: PcdCommitments,
#[serde(serialize_with = "serialize_hex", deserialize_with = "deserialize_hex")]
#[tsify(type = "string")]
pub state_id: [u8; 32], // the root of the tree created with all the commitments + public_data + roles. Serves as an unique id for a state too
#[serde(with = "hex_array_btree")]
#[tsify(type = "Record<string, string>")]
pub keys: BTreeMap<String, [u8; 32]>, // We may not always have all the keys
pub validation_tokens: Vec<Proof>, // Signature of the hash of pcd_commitment tagged with some decision like "yes" or "no"
pub public_data: Pcd,
#[tsify(type = "Record<string, RoleDefinition>")]
pub roles: Roles,
}
impl ProcessState {
pub fn new(
commited_in: OutPoint,
private_data: Pcd,
public_data: Pcd,
roles: Roles,
) -> anyhow::Result<Self> {
// TODO check that we don't have duplicated field names in private and public data, nor a "roles" field name
let all_attributes = Pcd::new(
private_data
.clone()
.into_iter()
.chain(public_data.clone())
.collect(),
);
let pcd_commitment = PcdCommitments::new(&commited_in, &all_attributes, &roles)?;
let merkle_root = pcd_commitment
.create_merkle_tree()?
.root()
.ok_or(anyhow::Error::msg("Invalid merkle tree"))?;
let res = Self {
commited_in,
pcd_commitment,
state_id: merkle_root,
keys: BTreeMap::new(),
validation_tokens: vec![],
public_data,
roles,
};
Ok(res)
}
pub fn update_value(&mut self, key: &str, new_value: &[u8]) -> anyhow::Result<()> {
// Update the commitment
let mut updated_commitments = self.pcd_commitment.clone();
updated_commitments.update_with_value(&self.commited_in, key, new_value)?;
// Update merkle tree
let merkle_tree = updated_commitments.create_merkle_tree()?;
// Update state_id
self.state_id = merkle_tree
.root()
.ok_or_else(|| anyhow::Error::msg("Invalid merkle tree"))?;
// Everything is ok, we can update the state
self.pcd_commitment = updated_commitments;
Ok(())
}
pub fn get_message_hash(&self, approval: bool) -> anyhow::Result<AnkHash> {
if approval {
Ok(AnkHash::ValidationYes(
AnkValidationYesHash::from_merkle_root(self.state_id),
))
} else {
Ok(AnkHash::ValidationNo(
AnkValidationNoHash::from_merkle_root(self.state_id),
))
}
}
fn handle_demiurge(&self, demiurge_role: &RoleDefinition) -> anyhow::Result<RoleDefinition> {
if demiurge_role.members.is_empty() {
return Err(anyhow::Error::msg(
"Invalid demiurge role: members can't be empty",
));
}
// validation_rules is empty
if !demiurge_role.validation_rules.is_empty() {
return Err(anyhow::Error::msg(
"Invalid demiurge role: validation_rules must be empty",
));
}
// if demiurge_role.storages.is_empty() {
// return Err(anyhow::Error::msg("Invalid demiurge role: storages can't be empty"));
// }
let all_keys: Vec<String> = self.pcd_commitment.keys().map(|k| k.clone()).collect();
// define the rule
let validation_rule = ValidationRule::new(1.0, all_keys.clone(), 1.0)?;
let role = RoleDefinition {
members: demiurge_role.members.clone(),
storages: demiurge_role.storages.clone(),
validation_rules: vec![validation_rule],
};
Ok(role)
}
/// This is a simplified and streamlined validation for obliteration state
fn handle_obliteration(
&self,
apophis: &RoleDefinition,
members_list: &OutPointMemberMap,
) -> anyhow::Result<()> {
// Apophis should have only one rule
if apophis.validation_rules.len() != 1 {
return Err(anyhow::Error::msg("Should have only one rule"));
};
let obliteration_rule = apophis.validation_rules.get(0).unwrap();
let empty_field = "";
// This rule should have only one empty string as field
if obliteration_rule.fields.len() != 1 {
return Err(anyhow::Error::msg("Should have only one field"));
};
if obliteration_rule.fields.get(0).unwrap() != empty_field {
return Err(anyhow::Error::msg("Field should be empty"));
};
apophis.is_satisfied(
vec![empty_field.to_owned()],
[0u8; 32],
&self.validation_tokens,
&members_list,
)
}
fn handle_pairing(
&self,
pairing_role: RoleDefinition,
previous_addresses: Vec<SilentPaymentAddress>,
) -> anyhow::Result<()> {
// members must be empty
if !pairing_role.members.is_empty() {
return Err(anyhow::Error::msg(
"Invalid pairing role: members list must be empty",
));
}
// pairing_role must have one rule that modifies pairedAddresses
let paired_addresses_rule = pairing_role.get_applicable_rules(PAIREDADDRESSES);
if paired_addresses_rule.len() != 1 {
return Err(anyhow::anyhow!(
"Invalid pairing role: there must one and only one rule for \"pairedAddresses\""
));
}
// TODO check that it matches what we have in the commitment here or somewhere else?
let updated_addresses_json = self.public_data.get_as_json(PAIREDADDRESSES)?;
let updated_addresses_vec: Vec<SilentPaymentAddress> =
serde_json::from_value(updated_addresses_json)?;
let updated_member = Member::new(updated_addresses_vec);
let previous_member = Member::new(previous_addresses);
let members = if previous_member.get_addresses().is_empty() {
vec![&updated_member]
} else {
vec![&previous_member]
};
paired_addresses_rule.get(0).unwrap().is_satisfied(
PAIREDADDRESSES,
self.state_id,
&self.validation_tokens,
members.as_slice(),
)
}
pub fn is_valid(
&self,
previous_state: Option<&ProcessState>,
members_list: &OutPointMemberMap,
) -> anyhow::Result<()> {
if self.validation_tokens.is_empty() {
return Err(anyhow::anyhow!(
"Can't validate a state with no proofs attached"
));
}
// We first handle obliteration
if self.state_id == [0u8; 32] {
if let Some(prev_state) = previous_state {
if let Some(apophis) = prev_state.roles.get(APOPHIS) {
return self.handle_obliteration(apophis, members_list);
}
}
return Err(anyhow::anyhow!("Can't find apophis"));
// then pairing
} else if let Some(pairing_role) = self.roles.get(PAIRING) {
if self.pcd_commitment.contains_key(PAIREDADDRESSES) {
if let Some(prev_state) = previous_state {
let prev_paired_addresses_json =
prev_state.public_data.get_as_json(PAIREDADDRESSES)?;
let paired_addresses: Vec<SilentPaymentAddress> =
serde_json::from_value(prev_paired_addresses_json)?;
return self.handle_pairing(pairing_role.clone(), paired_addresses);
} else {
// We are in a creation
return self.handle_pairing(pairing_role.clone(), vec![]);
}
}
// If we don't update pairedAddresses, we don't need to bother about pairing
}
// Check if each modified field satisfies at least one applicable rule across all roles
let all_fields_validated = !self.pcd_commitment.is_empty()
&& self.pcd_commitment.keys().all(|field| {
// Collect applicable rules from all roles for the current field
let applicable_roles: Vec<RoleDefinition> = self
.roles
.iter()
.filter_map(|(role_name, role_def)| {
if let Ok(special_role) = SpecialRoles::from_str(&role_name) {
match special_role {
// We allow for a special case with a role that works only for initial state
// That's optional though
SpecialRoles::Demiurge => {
// If we're not in initial state just ignore it
if previous_state.is_some() {
return None;
} else {
// We try to validate with demiurge
match self.handle_demiurge(role_def) {
Ok(role) => return Some(role),
Err(e) => {
log::error!("{}", e.to_string());
return None;
}
}
}
// Otherwise we just continue normal validation
}
// We already handled other special roles
_ => return None,
}
}
let mut filtered_role_def = role_def.clone();
let rules = filtered_role_def.get_applicable_rules(field);
filtered_role_def.validation_rules =
rules.into_iter().map(|r| r.clone()).collect();
if filtered_role_def.validation_rules.is_empty() {
None
} else {
Some(filtered_role_def)
}
})
.collect();
if applicable_roles.is_empty() {
return false; // No rules apply to this field, consider it invalid
}
applicable_roles.into_iter().any(|role_def| {
role_def.validation_rules.iter().any(|rule| {
let members: Vec<&Member> = role_def
.members
.iter()
.filter_map(|outpoint| members_list.0.get(outpoint))
.collect();
rule.is_satisfied(
field,
self.state_id,
&self.validation_tokens,
members.as_slice(),
)
.is_ok()
})
})
});
if all_fields_validated {
Ok(())
} else {
Err(anyhow::anyhow!("Not enough valid proofs"))
}
}
pub fn is_empty(&self) -> bool {
self.state_id == [0u8; 32]
}
pub fn get_fields_to_validate_for_member(
&self,
member: &OutPoint,
) -> anyhow::Result<Vec<String>> {
let mut res: HashSet<String> = HashSet::new();
// Are we in that role?
for (_, role_def) in self.roles.iter() {
if !role_def.members.contains(member) {
continue;
} else {
// what are the fields we can modify?
for rule in &role_def.validation_rules {
if rule.allows_modification() {
res.extend(rule.fields.iter().map(|f| f.clone()));
}
}
}
}
Ok(res.into_iter().collect())
}
}
/// A process is basically a succession of states
/// The latest state MUST be an empty state with only the commited_in field set at the last unspent outpoint
/// Commiting this last empty state in a transaction is called obliterating a process, basically terminating it
#[derive(Debug, Default, Clone, PartialEq, Serialize, Deserialize, Tsify)]
#[tsify(into_wasm_abi, from_wasm_abi)]
pub struct Process {
states: Vec<ProcessState>,
}
impl Process {
pub fn new(commited_in: OutPoint) -> Self {
let empty_state = ProcessState {
commited_in,
..Default::default()
};
Self {
states: vec![empty_state],
}
}
pub fn get_process_id(&self) -> anyhow::Result<OutPoint> {
Ok(self
.states
.get(0)
.ok_or(anyhow::Error::msg("Empty state list"))?
.commited_in)
}
pub fn get_process_tip(&self) -> anyhow::Result<OutPoint> {
Ok(self
.states
.last()
.ok_or(anyhow::Error::msg("Empty state list"))?
.commited_in)
}
pub fn get_last_unspent_outpoint(&self) -> anyhow::Result<OutPoint> {
if self.states.is_empty() {
return Err(anyhow::Error::msg("Empty Process"));
}
let last_state = self.states.last().unwrap();
Ok(last_state.commited_in)
}
pub fn update_states_tip(&mut self, new_commitment: OutPoint) -> anyhow::Result<()> {
if self.states.is_empty() {
return Err(anyhow::Error::msg("Empty Process"));
}
let last_value = self.states.last().unwrap();
if !last_value.is_empty() {
return Err(anyhow::Error::msg("Last value should be empty"));
}
if last_value.commited_in == new_commitment {
return Err(anyhow::Error::msg(
"new_commitment is the same than existing tip",
));
}
// Before updating we make sure that we only have one concurrent state
let concurrent_states = self.get_latest_concurrent_states()?;
if concurrent_states.len() != 2 {
return Err(anyhow::Error::msg(
"We must have exactly one state for the current tip",
));
}
// Replace the existing tip
let new_tip = ProcessState {
commited_in: new_commitment,
..Default::default()
};
let _ = self.states.pop().unwrap();
self.states.push(new_tip);
Ok(())
}
/// We want to insert a new state that would be commited by the last UTXO
/// The new state *must* have the same commited_in than the last empty one
/// We want to always keep an empty state with only the latest unspent commited_in value at the last position
pub fn insert_concurrent_state(&mut self, new_state: ProcessState) -> anyhow::Result<()> {
if self.states.is_empty() {
return Err(anyhow::Error::msg("Empty Process"));
}
let last_value = self.states.last().unwrap();
if !last_value.is_empty() {
return Err(anyhow::Error::msg("Last value should be empty"));
}
if last_value.commited_in != new_state.commited_in {
return Err(anyhow::Error::msg(
"A concurrent state must have the same commited in than the tip of the states",
));
}
let empty_state = self.states.pop().unwrap();
self.states.push(new_state);
// We always keep an empty state at the end
self.states.push(empty_state);
Ok(())
}
pub fn get_state_at(&self, index: usize) -> Option<&ProcessState> {
self.states.get(index)
}
pub fn get_state_at_mut(&mut self, index: usize) -> Option<&mut ProcessState> {
self.states.get_mut(index)
}
pub fn get_latest_state(&self) -> Option<&ProcessState> {
self.states.last()
}
pub fn get_latest_state_mut(&mut self) -> Option<&mut ProcessState> {
self.states.last_mut()
}
/// If `state` is a concurrent state, parent is the last commited one
/// Otherwise it's just the state commited before
/// If it's the initial state we return `None`
pub fn get_parent_state(&self, target_commited_in: &OutPoint) -> Option<&ProcessState> {
let tip = self.get_process_tip().ok()?; // Use `?` for cleaner error handling.
// If the target is the current tip, return the last committed state.
if tip == *target_commited_in {
return self.get_latest_commited_state();
}
// Iterate over the states to find the parent.
let mut parent_state = None;
for state in &self.states {
// Check if the current state's `commited_in` matches the target.
if state.commited_in == *target_commited_in {
return parent_state; // Return the parent state if found.
}
// Update the parent_state to the current state.
parent_state = Some(state);
}
// Return `None` if no matching state is found.
None
}
pub fn get_state_for_id(&self, state_id: &[u8; 32]) -> anyhow::Result<&ProcessState> {
if self.get_number_of_states() == 0 {
// This should never happen, but we better get rid of it now
return Err(anyhow::Error::msg("process is empty".to_owned()));
}
for p in &self.states {
if *state_id == p.state_id {
return Ok(p);
}
}
return Err(anyhow::Error::msg("No state for this merkle root"));
}
pub fn get_state_for_id_mut(
&mut self,
state_id: &[u8; 32],
) -> anyhow::Result<&mut ProcessState> {
if self.get_number_of_states() == 0 {
// This should never happen, but we better get rid of it now
return Err(anyhow::Error::msg("process is empty".to_owned()));
}
for p in &mut self.states {
if *state_id == p.state_id {
return Ok(p);
}
}
return Err(anyhow::Error::msg("No state for this merkle root"));
}
/// This is useful when multiple unvalidated states are pending waiting for enough validations
/// It returns the latest state and all the previous states that have the same commited_in
/// It means that all the returned states are unvalidated and except for the one that get validated they will be pruned
pub fn get_latest_concurrent_states(&self) -> anyhow::Result<Vec<&ProcessState>> {
if self.get_number_of_states() == 0 {
// This should never happen, but we better get rid of it now
return Err(anyhow::Error::msg("process is empty".to_owned()));
}
let mut states = vec![];
let mut previous_commited_in = OutPoint::null();
// We iterate backwards until we find a state that has a different commited_in
for state in self.states.iter().rev() {
if previous_commited_in == OutPoint::null() {
previous_commited_in = state.commited_in;
} else if previous_commited_in != state.commited_in {
break;
}
states.push(state);
}
Ok(states)
}
pub fn get_latest_concurrent_states_mut(&mut self) -> anyhow::Result<Vec<&mut ProcessState>> {
if self.get_number_of_states() == 0 {
// This should never happen, but we better get rid of it now
return Err(anyhow::Error::msg("process is empty".to_owned()));
}
let mut states = vec![];
let mut previous_commited_in = OutPoint::null();
// We iterate backwards until we find a state that has a different commited_in
for state in self.states.iter_mut().rev() {
if previous_commited_in == OutPoint::null() {
previous_commited_in = state.commited_in;
} else if previous_commited_in != state.commited_in {
break;
}
states.push(state);
}
Ok(states)
}
pub fn remove_all_concurrent_states(&mut self) -> anyhow::Result<Vec<ProcessState>> {
if self.get_number_of_states() == 0 {
// This should never happen, but we better get rid of it now
return Err(anyhow::Error::msg("process is empty".to_owned()));
}
let empty_state = self.states.pop().unwrap();
let last_commitment_outpoint = empty_state.commited_in;
if let Some(split_index) = self
.states
.iter()
.position(|state| state.commited_in == last_commitment_outpoint)
{
let removed = self.states.split_off(split_index);
// We make sure we always have an empty state at the end
self.states.push(empty_state);
Ok(removed)
} else {
// This could happen if we weren't aware there was pending concurrent updates
// We push the empty state back and return an empty vec
self.states.push(empty_state);
Ok(vec![])
}
}
pub fn get_latest_commited_state(&self) -> Option<&ProcessState> {
if self.states.is_empty() {
return None;
}
let last_state = self.states.last().unwrap();
debug_assert!(last_state.is_empty()); // Last state must always be empty
// We look for the last commited in before all the pending states
let latest_outpoint = last_state.commited_in;
return self
.states
.iter()
.rev()
.find(|s| s.commited_in != latest_outpoint);
}
pub fn get_state_index(&self, state: &ProcessState) -> Option<usize> {
// Get the commited_in value of the provided state
let target_commited_in = state.commited_in;
// Find the index of the first state with the same commited_in value
self.states
.iter()
.position(|s| s.commited_in == target_commited_in)
}
pub fn get_number_of_states(&self) -> usize {
self.states.len()
}
}
pub static CACHEDPROCESSES: OnceLock<Mutex<HashMap<OutPoint, Process>>> = OnceLock::new();
pub fn lock_processes() -> Result<MutexGuard<'static, HashMap<OutPoint, Process>>, anyhow::Error> {
CACHEDPROCESSES
.get_or_init(|| Mutex::new(HashMap::new()))
.lock_anyhow()
}
pub fn check_tx_for_process_updates(tx: &Transaction) -> anyhow::Result<OutPoint> {
let mut processes = lock_processes()?;
for (outpoint, process) in &mut *processes {
let process_tip = if let Ok(tip) = process.get_process_tip() {
tip
} else {
continue;
};
for input in &tx.input {
if process_tip == input.previous_output {
log::debug!("Found a match for process tip {}", process_tip);
// This transaction commits a new state
// Look for the op_return
let op_return_outputs: Vec<_> = tx
.output
.iter()
.filter(|o| o.script_pubkey.is_op_return())
.collect();
if op_return_outputs.len() != 1 {
return Err(anyhow::Error::msg(
"Transaction must contain exactly one op_return output",
));
}
let mut state_id = [0u8; 32];
let data = &op_return_outputs
.into_iter()
.next()
.unwrap()
.script_pubkey
.as_bytes()[2..];
if data.len() != 32 {
return Err(anyhow::Error::msg("commited data is not 32B long"));
}
state_id.clone_from_slice(data);
// Check if we know about the commited state
let new_state: ProcessState;
if let Ok(commited_state) = process.get_state_for_id(&state_id) {
new_state = commited_state.clone();
} else {
new_state = ProcessState {
commited_in: process_tip,
state_id,
..Default::default()
};
}
// We update the process in place
process.remove_all_concurrent_states()?;
process.insert_concurrent_state(new_state)?;
process.update_states_tip(OutPoint::new(tx.txid(), 0))?;
return Ok(*outpoint);
}
}
}
Err(anyhow::Error::msg(
"Transaction doesn't spend any known commitment",
))
}
#[cfg(test)]
mod tests {
use std::str::FromStr;
use serde_json::{json, Value};
use sp_client::{
bitcoin::{secp256k1::SecretKey, Network, Txid},
silentpayments::SilentPaymentAddress,
SpClient, SpendKey,
};
use crate::pcd::{Member, ValidationRule, ZSTD_COMPRESSION_LEVEL};
use super::*;
const ALICE_BOB_PAIRING: &str =
"fcd21fcf92c8ddd74bb2726138bee9951946ca03b10c1297accd67da159df82b:0";
const CAROL_PAIRING: &str =
"a4f3d2d5ca7af258e6a2c1cfe85b85d4e3f3d1387417fd64012d3c7bfb95a9e9:0";
const DAVE_PAIRING: &str = "bd21f6acdd0e026e8c02298a51ec40dfaced34d95aec685f407ab5ac91b5f775:0";
fn create_alice_wallet() -> SpClient {
SpClient::new(
SecretKey::from_str("a67fb6bf5639efd0aeb19c1c584dd658bceda87660ef1088d4a29d2e77846973")
.unwrap(),
SpendKey::Secret(
SecretKey::from_str(
"a1e4e7947accf33567e716c9f4d186f26398660e36cf6d2e711af64b3518e65c",
)
.unwrap(),
),
Network::Signet,
)
.unwrap()
}
fn create_bob_wallet() -> SpClient {
SpClient::new(
SecretKey::from_str("4d9f62b2340de3f0bafd671b78b19edcfded918c4106baefd34512f12f520e9b")
.unwrap(),
SpendKey::Secret(
SecretKey::from_str(
"dafb99602721577997a6fe3da54f86fd113b1b58f0c9a04783d486f87083a32e",
)
.unwrap(),
),
Network::Signet,
)
.unwrap()
}
fn create_carol_wallet() -> SpClient {
SpClient::new(
SecretKey::from_str("e4a5906eaa1a7ab24d5fc8d9b600d47f79caa6511c056c111677b7a33e62c5e9")
.unwrap(),
SpendKey::Secret(
SecretKey::from_str(
"e4c282e14668af1435e39df78403a7b406a791e3c6e666295496a6a865ade162",
)
.unwrap(),
),
Network::Signet,
)
.unwrap()
}
fn create_dave_wallet() -> SpClient {
SpClient::new(
SecretKey::from_str("261d5f9ae4d2b0d8b17ed0c52bd2be7dbce14d9ac1f0f1d4904d3ca7df03766d")
.unwrap(),
SpendKey::Secret(
SecretKey::from_str(
"8441e2adbb39736f384617fafc61e0d894bf3a5c2b69801fd4476bdcce04fb59",
)
.unwrap(),
),
Network::Signet,
)
.unwrap()
}
fn get_members_map() -> HashMap<OutPoint, Member> {
let alice_wallet = create_alice_wallet();
let bob_wallet = create_bob_wallet();
let carol_wallet = create_carol_wallet();
let dave_wallet = create_dave_wallet();
let alice_address =
SilentPaymentAddress::try_from(alice_wallet.get_receiving_address()).unwrap();
let bob_address =
SilentPaymentAddress::try_from(bob_wallet.get_receiving_address()).unwrap();
let carol_address =
SilentPaymentAddress::try_from(carol_wallet.get_receiving_address()).unwrap();
let dave_address =
SilentPaymentAddress::try_from(dave_wallet.get_receiving_address()).unwrap();
let members_map: HashMap<OutPoint, Member> = HashMap::from([
(
OutPoint::from_str(ALICE_BOB_PAIRING).unwrap(),
Member::new(vec![alice_address, bob_address]),
),
(
OutPoint::from_str(CAROL_PAIRING).unwrap(),
Member::new(vec![carol_address]),
),
(
OutPoint::from_str(DAVE_PAIRING).unwrap(),
Member::new(vec![dave_address]),
),
]);
members_map
}
fn dummy_process_state() -> ProcessState {
let validation_rule1 = ValidationRule::new(1.0, vec!["field1".to_owned()], 0.5).unwrap();
let validation_rule2 = ValidationRule::new(1.0, vec!["field2".to_owned()], 0.5).unwrap();
let validation_rule3 = ValidationRule::new(1.0, vec!["roles".to_owned()], 0.5).unwrap();
let validation_rule4 =
ValidationRule::new(1.0, vec!["public1".to_owned(), "public2".to_owned()], 0.5)
.unwrap();
let apophis_rule = ValidationRule::new(1.0, vec!["".to_owned()], 1.0).unwrap();
let role_demiurge = RoleDefinition {
members: vec![OutPoint::from_str(ALICE_BOB_PAIRING).unwrap()],
validation_rules: vec![],
storages: vec![],
};
let role_def1 = RoleDefinition {
members: vec![OutPoint::from_str(ALICE_BOB_PAIRING).unwrap()],
validation_rules: vec![validation_rule1],
storages: vec![],
};
let role_def2 = RoleDefinition {
members: vec![OutPoint::from_str(CAROL_PAIRING).unwrap()],
validation_rules: vec![validation_rule2],
storages: vec![],
};
let role_def_roles = RoleDefinition {
members: vec![OutPoint::from_str(ALICE_BOB_PAIRING).unwrap()],
validation_rules: vec![validation_rule3],
storages: vec![],
};
let role_def_public_data = RoleDefinition {
members: vec![OutPoint::from_str(ALICE_BOB_PAIRING).unwrap()],
validation_rules: vec![validation_rule4],
storages: vec![],
};
let role_def_apophis = RoleDefinition {
members: vec![OutPoint::from_str(DAVE_PAIRING).unwrap()],
validation_rules: vec![apophis_rule],
storages: vec![],
};
let roles: BTreeMap<String, RoleDefinition> = BTreeMap::from([
("demiurge".to_owned(), role_demiurge),
("role1".to_owned(), role_def1),
("role2".to_owned(), role_def2),
("role_roles".to_owned(), role_def_roles),
("role_public_data".to_owned(), role_def_public_data),
("apophis".to_owned(), role_def_apophis),
]);
let private_data: Pcd = json!({
"field1": "value1",
"field2": "value2",
})
.try_into()
.unwrap();
let outpoint = OutPoint::null();
let public_data: Pcd = json!({
"public1": "public1",
"public2": "public2",
})
.try_into()
.unwrap();
ProcessState::new(outpoint, private_data, public_data, Roles::new(roles)).unwrap()
}
fn create_pairing_process_one() -> ProcessState {
let carol_wallet = create_carol_wallet();
let carol_address = carol_wallet.get_receiving_address();
let pairing_rule = ValidationRule::new(1.0, vec![PAIREDADDRESSES.to_owned()], 1.0).unwrap();
let pairing_role_def = RoleDefinition {
members: vec![],
validation_rules: vec![pairing_rule],
storages: vec![],
};
let outpoint = OutPoint::from_str(
"8425e9749957fd8ca83460c21718be4017692fd3ae61cbb0f0d401e7a5ddce6a:0",
)
.unwrap();
let private_data: Pcd = json!({"description": "pairing"}).try_into().unwrap();
let paired_addresses: Pcd = json!({PAIREDADDRESSES: [carol_address]})
.try_into()
.unwrap();
ProcessState::new(
outpoint,
private_data,
paired_addresses,
Roles::new(BTreeMap::from([(PAIRING.to_owned(), pairing_role_def)])),
)
.unwrap()
}
fn create_pairing_process_two() -> ProcessState {
let carol_wallet = create_carol_wallet();
let carol_address = carol_wallet.get_receiving_address();
let dave_wallet = create_dave_wallet();
let dave_address = dave_wallet.get_receiving_address();
let pairing_rule = ValidationRule::new(1.0, vec![PAIREDADDRESSES.to_owned()], 1.0).unwrap();
let pairing_role_def = RoleDefinition {
members: vec![],
validation_rules: vec![pairing_rule],
storages: vec![],
};
let outpoint = OutPoint::from_str(
"8425e9749957fd8ca83460c21718be4017692fd3ae61cbb0f0d401e7a5ddce6a:0",
)
.unwrap();
let private_data: Pcd = json!({"description": "pairing"}).try_into().unwrap();
let paired_addresses: Pcd = json!({PAIREDADDRESSES: [carol_address, dave_address]})
.try_into()
.unwrap();
ProcessState::new(
outpoint,
private_data,
paired_addresses,
Roles::new(BTreeMap::from([(PAIRING.to_owned(), pairing_role_def)])),
)
.unwrap()
}
#[test]
fn test_error_no_proofs() {
let state = dummy_process_state();
let members_map = get_members_map();
let result = state.is_valid(None, &OutPointMemberMap(members_map));
assert!(result.is_err());
assert_eq!(
result.unwrap_err().to_string(),
"Can't validate a state with no proofs attached"
);
}
#[test]
/// We provide a proof signed with a key that is not the spending key for either alice or bob
fn test_error_invalid_proof() {
let mut state = dummy_process_state();
// We sign with a random key
let signing_key =
SecretKey::from_str("39b2a765dc93e02da04a0e9300224b4f99fa7b83cfae49036dff58613fd3277c")
.unwrap();
let message_hash = state.get_message_hash(true).unwrap();
state
.validation_tokens
.push(Proof::new(message_hash, signing_key));
let result = state.is_valid(None, &OutPointMemberMap(get_members_map()));
assert!(result.is_err());
assert_eq!(result.unwrap_err().to_string(), "Not enough valid proofs");
}
#[test]
/// Carol signs alone for an init state
fn test_error_not_enough_signatures() {
let mut state = dummy_process_state();
// We sign with Carol key
let carol_key: SecretKey = create_carol_wallet().get_spend_key().try_into().unwrap();
let message_hash = state.get_message_hash(true).unwrap();
state
.validation_tokens
.push(Proof::new(message_hash, carol_key));
let result = state.is_valid(None, &OutPointMemberMap(get_members_map()));
assert!(result.is_err());
assert_eq!(result.unwrap_err().to_string(), "Not enough valid proofs");
}
#[test]
/// Alice signs alone for her fields in an init state
fn test_valid_just_enough_signatures() {
let mut state = dummy_process_state();
// We sign with Alice and Carol keys
let alice_key: SecretKey = create_alice_wallet().get_spend_key().try_into().unwrap();
let carol_key: SecretKey = create_carol_wallet().get_spend_key().try_into().unwrap();
let message_hash = state.get_message_hash(true).unwrap();
state
.validation_tokens
.push(Proof::new(message_hash, alice_key));
state
.validation_tokens
.push(Proof::new(message_hash, carol_key));
let result = state.is_valid(None, &OutPointMemberMap(get_members_map()));
assert!(result.is_ok());
}
#[test]
/// AliceBob is the demiurge
fn test_valid_demiurge() {
let mut state = dummy_process_state();
// We sign with Alice and Carol keys
let alice_key: SecretKey = create_alice_wallet().get_spend_key().try_into().unwrap();
let bob_key: SecretKey = create_bob_wallet().get_spend_key().try_into().unwrap();
let message_hash = state.get_message_hash(true).unwrap();
state
.validation_tokens
.push(Proof::new(message_hash, alice_key));
state
.validation_tokens
.push(Proof::new(message_hash, bob_key));
let result = state.is_valid(None, &OutPointMemberMap(get_members_map()));
assert!(result.is_ok());
}
#[test]
/// Carol tries to bypass demiurge role
fn test_error_demiurge() {
let mut state = dummy_process_state();
// We sign with Alice and Carol keys
let carol_key: SecretKey = create_alice_wallet().get_spend_key().try_into().unwrap();
let message_hash = state.get_message_hash(true).unwrap();
state
.validation_tokens
.push(Proof::new(message_hash, carol_key));
let result = state.is_valid(None, &OutPointMemberMap(get_members_map()));
assert!(result.is_err());
}
#[test]
/// Carol tries to bypass demiurge role
fn test_error_demiurge_not_init_state() {
let mut state = dummy_process_state();
// We sign with Alice and Carol keys
let carol_key: SecretKey = create_alice_wallet().get_spend_key().try_into().unwrap();
let message_hash = state.get_message_hash(true).unwrap();
state
.validation_tokens
.push(Proof::new(message_hash, carol_key));
let result = state.is_valid(
Some(&dummy_process_state()),
&OutPointMemberMap(get_members_map()),
);
assert!(result.is_err());
}
#[test]
fn test_valid_pairing() {
let mut pairing_first_state = create_pairing_process_one();
let carol_key: SecretKey = create_carol_wallet().get_spend_key().try_into().unwrap();
let message_hash = pairing_first_state.get_message_hash(true).unwrap();
pairing_first_state
.validation_tokens
.push(Proof::new(message_hash, carol_key));
let result = pairing_first_state.is_valid(None, &OutPointMemberMap(get_members_map()));
assert!(result.is_ok());
}
#[test]
fn test_error_pairing_wrong_proof() {
let mut pairing_first_state = create_pairing_process_one();
let alice_key: SecretKey = create_alice_wallet().get_spend_key().try_into().unwrap();
let message_hash = pairing_first_state.get_message_hash(true).unwrap();
pairing_first_state
.validation_tokens
.push(Proof::new(message_hash, alice_key));
let result = pairing_first_state.is_valid(None, &OutPointMemberMap(get_members_map()));
assert!(result.is_err());
}
#[test]
fn test_valid_pairing_add_device() {
let pairing_state = create_pairing_process_one();
let mut paired_addresses: Vec<SilentPaymentAddress> = serde_json::from_value(
pairing_state
.public_data
.get_as_json(PAIREDADDRESSES)
.unwrap(),
)
.unwrap();
let mut pairing_process = Process::new(pairing_state.commited_in);
pairing_process
.insert_concurrent_state(pairing_state)
.unwrap();
let new_commitment = OutPoint::from_str(
"7f1a6d8923d6ee58a075c0e99e25472bb22a3eea221739281c2beaf829f03f27:0",
)
.unwrap();
pairing_process.update_states_tip(new_commitment).unwrap();
let members_list = &OutPointMemberMap(HashMap::from([(
pairing_process.get_process_id().unwrap(),
Member::new(paired_addresses.clone()),
)]));
// Add Dave address
let dave_address = create_dave_wallet().get_receiving_address();
paired_addresses.push(dave_address);
let roles = &pairing_process.get_latest_commited_state().unwrap().roles;
let mut add_device_state = ProcessState::new(
new_commitment,
Pcd::new(BTreeMap::new()),
json!({PAIREDADDRESSES: paired_addresses})
.try_into()
.unwrap(),
roles.clone(),
)
.unwrap();
let carol_key: SecretKey = create_carol_wallet().get_spend_key().try_into().unwrap();
let message_hash = add_device_state.get_message_hash(true).unwrap();
add_device_state
.validation_tokens
.push(Proof::new(message_hash, carol_key));
let result =
add_device_state.is_valid(pairing_process.get_latest_commited_state(), members_list);
assert!(result.is_ok());
}
#[test]
fn test_valid_pairing_rm_device() {
let pairing_state = create_pairing_process_two();
let paired_addresses: Vec<SilentPaymentAddress> = serde_json::from_value(
pairing_state
.public_data
.get_as_json(PAIREDADDRESSES)
.unwrap(),
)
.unwrap();
let mut pairing_process = Process::new(pairing_state.commited_in);
pairing_process
.insert_concurrent_state(pairing_state)
.unwrap();
let new_commitment = OutPoint::from_str(
"7f1a6d8923d6ee58a075c0e99e25472bb22a3eea221739281c2beaf829f03f27:0",
)
.unwrap();
pairing_process.update_states_tip(new_commitment).unwrap();
let members_list = &OutPointMemberMap(HashMap::from([(
pairing_process.get_process_id().unwrap(),
Member::new(paired_addresses.clone()),
)]));
// Remove Dave address
let dave_address = create_dave_wallet().get_receiving_address();
let filtered_paired_addresses: Vec<SilentPaymentAddress> = paired_addresses
.into_iter()
.filter_map(|a| if a != dave_address { Some(a) } else { None })
.collect();
let roles = &pairing_process.get_latest_commited_state().unwrap().roles;
let mut rm_device_state = ProcessState::new(
new_commitment,
Pcd::new(BTreeMap::new()),
json!({PAIREDADDRESSES: filtered_paired_addresses})
.try_into()
.unwrap(),
roles.clone(),
)
.unwrap();
// We need both devices to agree to remove one
let carol_key: SecretKey = create_carol_wallet().get_spend_key().try_into().unwrap();
let dave_key: SecretKey = create_dave_wallet().get_spend_key().try_into().unwrap();
let message_hash = rm_device_state.get_message_hash(true).unwrap();
rm_device_state
.validation_tokens
.push(Proof::new(message_hash, carol_key));
rm_device_state
.validation_tokens
.push(Proof::new(message_hash, dave_key));
let result =
rm_device_state.is_valid(pairing_process.get_latest_commited_state(), members_list);
assert!(result.is_ok());
}
/// We check that Dave can't add himself to the pairing
#[test]
fn test_error_pairing_add_device_wrong_signature() {
let pairing_state = create_pairing_process_one();
let mut paired_addresses: Vec<SilentPaymentAddress> = serde_json::from_value(
pairing_state
.public_data
.get_as_json(PAIREDADDRESSES)
.unwrap(),
)
.unwrap();
let mut pairing_process = Process::new(pairing_state.commited_in);
pairing_process
.insert_concurrent_state(pairing_state)
.unwrap();
let new_commitment = OutPoint::from_str(
"7f1a6d8923d6ee58a075c0e99e25472bb22a3eea221739281c2beaf829f03f27:0",
)
.unwrap();
pairing_process.update_states_tip(new_commitment).unwrap();
let members_list = &OutPointMemberMap(HashMap::from([(
pairing_process.get_process_id().unwrap(),
Member::new(paired_addresses.clone()),
)]));
// Add Dave address
let dave_address = create_dave_wallet().get_receiving_address();
paired_addresses.push(dave_address);
let roles = &pairing_process.get_latest_commited_state().unwrap().roles;
let mut add_device_state = ProcessState::new(
new_commitment,
Pcd::new(BTreeMap::new()),
json!({PAIREDADDRESSES: paired_addresses})
.try_into()
.unwrap(),
roles.clone(),
)
.unwrap();
let dave_key: SecretKey = create_dave_wallet().get_spend_key().try_into().unwrap();
let message_hash = add_device_state.get_message_hash(true).unwrap();
add_device_state
.validation_tokens
.push(Proof::new(message_hash, dave_key));
let result =
add_device_state.is_valid(pairing_process.get_latest_commited_state(), members_list);
assert!(result.is_err());
}
#[test]
/// everyone signs for everything
fn test_valid_all_signatures() {
let mut state = dummy_process_state();
let alice_key: SecretKey = create_alice_wallet().get_spend_key().try_into().unwrap();
let bob_key: SecretKey = create_bob_wallet().get_spend_key().try_into().unwrap();
let carol_key: SecretKey = create_carol_wallet().get_spend_key().try_into().unwrap();
let message_hash = state.get_message_hash(true).unwrap();
state
.validation_tokens
.push(Proof::new(message_hash, alice_key));
state
.validation_tokens
.push(Proof::new(message_hash, bob_key));
state
.validation_tokens
.push(Proof::new(message_hash, carol_key));
let result = state.is_valid(None, &OutPointMemberMap(get_members_map()));
assert!(result.is_ok());
}
#[test]
/// Carol tries to obliterate the process but she's not apophis
fn test_error_invalid_obliteration() {
let mut state = dummy_process_state();
let mut process = Process::new(state.commited_in);
process.insert_concurrent_state(state.clone()).unwrap();
// We simulate a first commitment
process
.update_states_tip(OutPoint::new(
Txid::from_str("cbeb4455f8d11848809bacd59bfd570243dbe7c4e9a340fa949aae3020fdb127")
.unwrap(),
0,
))
.unwrap();
// Now we take the last empty state and try to invalidate it
let empty_state = process.get_state_for_id(&[0u8; 32]).unwrap();
let carol_key: SecretKey = create_carol_wallet().get_spend_key().try_into().unwrap();
let message_hash = empty_state.get_message_hash(true).unwrap();
state
.validation_tokens
.push(Proof::new(message_hash, carol_key));
let result = state.is_valid(None, &OutPointMemberMap(get_members_map()));
assert!(result.is_err());
}
#[test]
/// Dave signs to obliterate the process
fn test_valid_obliteration() {
let state = dummy_process_state();
let mut process = Process::new(state.commited_in);
process.insert_concurrent_state(state.clone()).unwrap();
// We simulate a first commitment
process
.update_states_tip(OutPoint::new(
Txid::from_str("cbeb4455f8d11848809bacd59bfd570243dbe7c4e9a340fa949aae3020fdb127")
.unwrap(),
0,
))
.unwrap();
// Now we take the last empty state and try to commit it to invalidate the whole process
let empty_state = process.get_state_for_id_mut(&[0u8; 32]).unwrap();
let dave_key: SecretKey = create_dave_wallet().get_spend_key().try_into().unwrap();
let message_hash = empty_state.get_message_hash(true).unwrap();
empty_state
.validation_tokens
.push(Proof::new(message_hash, dave_key));
let result = empty_state.is_valid(Some(&state), &OutPointMemberMap(get_members_map()));
assert!(result.is_ok());
}
#[test]
/// Carol refuses change for her part
fn test_error_carol_votes_no() {
let mut state = dummy_process_state();
let alice_key: SecretKey = create_alice_wallet().get_spend_key().try_into().unwrap();
let bob_key: SecretKey = create_bob_wallet().get_spend_key().try_into().unwrap();
let carol_key: SecretKey = create_carol_wallet().get_spend_key().try_into().unwrap();
let message_hash_yes = state.get_message_hash(true).unwrap();
let message_hash_no = state.get_message_hash(false).unwrap();
state
.validation_tokens
.push(Proof::new(message_hash_yes, alice_key));
state
.validation_tokens
.push(Proof::new(message_hash_yes, bob_key));
state
.validation_tokens
.push(Proof::new(message_hash_no, carol_key));
let result = state.is_valid(
Some(&dummy_process_state()),
&OutPointMemberMap(get_members_map()),
);
assert!(result.is_err());
assert_eq!(result.unwrap_err().to_string(), "Not enough valid proofs");
}
#[test]
/// Bob refuses change for his part, but Alice is enough to reach quorum
fn test_valid_bob_votes_no() {
let mut state = dummy_process_state();
let alice_key: SecretKey = create_alice_wallet().get_spend_key().try_into().unwrap();
let bob_key: SecretKey = create_bob_wallet().get_spend_key().try_into().unwrap();
let carol_key: SecretKey = create_carol_wallet().get_spend_key().try_into().unwrap();
let message_hash_yes = state.get_message_hash(true).unwrap();
let message_hash_no = state.get_message_hash(false).unwrap();
state
.validation_tokens
.push(Proof::new(message_hash_yes, alice_key));
state
.validation_tokens
.push(Proof::new(message_hash_no, bob_key));
state
.validation_tokens
.push(Proof::new(message_hash_yes, carol_key));
let result = state.is_valid(None, &OutPointMemberMap(get_members_map()));
assert!(result.is_ok());
}
#[test]
/// Everyone signs, and we have a previous state
fn test_valid_everyone_signs_with_prev_state() {
let state = dummy_process_state();
let mut new_state = state.clone();
let key_to_modify = state.pcd_commitment.keys().into_iter().next().unwrap();
let mut serialized_value = Vec::new();
serde_json::to_writer(
&mut serialized_value,
&Value::String("new_value1".to_owned()),
)
.unwrap();
let updated_value =
zstd::encode_all(serialized_value.as_slice(), ZSTD_COMPRESSION_LEVEL).unwrap();
new_state
.update_value(key_to_modify.as_str(), updated_value.as_slice())
.unwrap();
let alice_key: SecretKey = create_alice_wallet().get_spend_key().try_into().unwrap();
let bob_key: SecretKey = create_bob_wallet().get_spend_key().try_into().unwrap();
let carol_key: SecretKey = create_carol_wallet().get_spend_key().try_into().unwrap();
let message_hash = new_state.get_message_hash(true).unwrap();
new_state
.validation_tokens
.push(Proof::new(message_hash, alice_key));
new_state
.validation_tokens
.push(Proof::new(message_hash, bob_key));
new_state
.validation_tokens
.push(Proof::new(message_hash, carol_key));
let result = new_state.is_valid(Some(&state), &OutPointMemberMap(get_members_map()));
assert!(result.is_ok());
}
#[test]
/// Only Carol signs, but she doesn't have modification rights on modified field
fn test_error_not_right_signatures_with_prev_state() {
let state = dummy_process_state();
let mut new_state = state.clone();
let key_to_modify = state.pcd_commitment.keys().into_iter().next().unwrap();
let mut serialized_value = Vec::new();
serde_json::to_writer(
&mut serialized_value,
&Value::String("new_value1".to_owned()),
)
.unwrap();
let updated_value =
zstd::encode_all(serialized_value.as_slice(), ZSTD_COMPRESSION_LEVEL).unwrap();
new_state
.update_value(key_to_modify.as_str(), updated_value.as_slice())
.unwrap();
let carol_key: SecretKey = create_carol_wallet().get_spend_key().try_into().unwrap();
let message_hash = new_state.get_message_hash(true).unwrap();
new_state
.validation_tokens
.push(Proof::new(message_hash, carol_key));
let result = new_state.is_valid(Some(&state), &OutPointMemberMap(get_members_map()));
assert!(result.is_err());
}
#[test]
fn test_valid_add_someone_role() {
let mut state = dummy_process_state();
if let Some(role) = state.roles.get_mut(APOPHIS) {
role.members = vec![];
}
let mut process = Process::new(state.commited_in);
process.insert_concurrent_state(state).unwrap();
process
.update_states_tip(OutPoint::new(
Txid::from_str("cbeb4455f8d11848809bacd59bfd570243dbe7c4e9a340fa949aae3020fdb127")
.unwrap(),
0,
))
.unwrap();
// We now try to add dave into apophis role
let mut new_roles = process.get_latest_commited_state().unwrap().roles.clone();
if let Some(role) = new_roles.get_mut(APOPHIS) {
role.members = vec![OutPoint::from_str(DAVE_PAIRING).unwrap()];
}
let mut new_state = ProcessState::new(
process.get_process_tip().unwrap(),
Pcd::new(BTreeMap::new()),
Pcd::new(BTreeMap::new()),
new_roles,
)
.unwrap();
// Alice and Bob validate
let alice_key: SecretKey = create_alice_wallet().get_spend_key().try_into().unwrap();
let bob_key: SecretKey = create_bob_wallet().get_spend_key().try_into().unwrap();
let message_hash = new_state.get_message_hash(true).unwrap();
new_state
.validation_tokens
.push(Proof::new(message_hash, alice_key));
new_state
.validation_tokens
.push(Proof::new(message_hash, bob_key));
let result = new_state.is_valid(
process.get_parent_state(&new_state.commited_in),
&OutPointMemberMap(get_members_map()),
);
assert!(result.is_ok());
}
}