use std::{ collections::{BTreeMap, HashMap, HashSet}, sync::{Mutex, MutexGuard, OnceLock}, }; use serde::{Deserialize, Serialize}; use serde_json::Value; use sp_client::bitcoin::{OutPoint, Transaction}; use tsify::Tsify; use crate::{ pcd::{Member, Pcd, PcdCommitments, RoleDefinition, Roles}, serialization::{deserialize_hex, hex_array_btree, serialize_hex}, signature::{AnkHash, AnkValidationNoHash, AnkValidationYesHash, Proof}, MutexExt, SpecialRoles }; const OBLITERATION_MSG: [u8; 32] = [167, 164, 238, 168, 233, 235, 152, 107, 194, 162, 145, 42, 140, 11, 244, 71, 252, 67, 204, 207, 114, 85, 209, 80, 129, 190, 151, 172, 77, 174, 243, 1]; #[derive(Debug, Clone, Default, PartialEq, Serialize, Deserialize, Tsify)] #[tsify(into_wasm_abi, from_wasm_abi)] pub struct ProcessState { pub commited_in: OutPoint, #[tsify(type = "Record")] pub pcd_commitment: PcdCommitments, #[serde(serialize_with = "serialize_hex", deserialize_with = "deserialize_hex")] #[tsify(type = "string")] pub state_id: [u8; 32], // the root of the tree created with all the commitments + public_data + roles. Serves as an unique id for a state too #[serde(with = "hex_array_btree")] #[tsify(type = "Record")] pub keys: BTreeMap, // We may not always have all the keys pub validation_tokens: Vec, // Signature of the hash of pcd_commitment tagged with some decision like "yes" or "no" #[tsify(type = "Record")] pub public_data: Pcd, #[tsify(type = "Record")] pub roles: Roles, } impl ProcessState { pub fn new(commited_in: OutPoint, clear_state: Pcd, public_data: Pcd, roles: Roles) -> anyhow::Result { let pcd_commitment = PcdCommitments::new(&commited_in, &clear_state, &public_data, &roles)?; let merkle_root = pcd_commitment.create_merkle_tree()?.root().ok_or(anyhow::Error::msg("Invalid merkle tree"))?; let res = Self { commited_in, pcd_commitment, state_id: merkle_root, keys: BTreeMap::new(), validation_tokens: vec![], public_data, roles, }; Ok(res) } pub fn update_value(&mut self, key: &str, new_value: &Value) -> anyhow::Result<()> { // Update the commitment self.pcd_commitment.update_with_value(&self.commited_in, key, new_value)?; // Update merkle tree let merkle_tree = self.pcd_commitment.create_merkle_tree()?; // Update state_id self.state_id = merkle_tree.root().ok_or_else(|| anyhow::Error::msg("Invalid merkle tree"))?; Ok(()) } pub fn get_message_hash(&self, approval: bool) -> anyhow::Result { if approval { Ok(AnkHash::ValidationYes(AnkValidationYesHash::from_merkle_root(self.state_id))) } else { Ok(AnkHash::ValidationNo(AnkValidationNoHash::from_merkle_root(self.state_id))) } } fn list_modified_fields(&self, previous_state: Option<&ProcessState>) -> Vec { let new_state = &self.pcd_commitment; if let Some(prev_state) = previous_state { // Previous state exists; compute differences let previous_state_commitments = &prev_state.pcd_commitment; // Compute modified fields by comparing with previous state new_state .iter() .filter_map(|(key, value)| { let previous_value = previous_state_commitments.get(key); if previous_value.is_none() || value != previous_value.unwrap() { Some(key.clone()) } else { None } }) .collect() } else { // No previous state; all fields are considered modified new_state.keys() } } /// This is a simplified and streamlined validation for obliteration state fn handle_obliteration(&self) -> anyhow::Result<()> { // We need an Apophis role if let Some(apophis) = self.roles.get(SpecialRoles::APOPHIS.to_string().as_str()) { apophis.is_satisfied(vec!["".to_owned()], [0u8; 32], &self.validation_tokens) } else { Err(anyhow::Error::msg("Missing an apophis role")) } } pub fn is_valid(&self, previous_state: Option<&ProcessState>) -> anyhow::Result<()> { if self.validation_tokens.is_empty() { return Err(anyhow::anyhow!( "Can't validate a state with no proofs attached" )); } if self.validation_tokens.get(0).unwrap().get_message() == OBLITERATION_MSG { // We're dealing with a destruction update return self.handle_obliteration(); } // Compute modified fields let modified_fields = self.list_modified_fields(previous_state); if modified_fields.is_empty() { return Err(anyhow::anyhow!("State is identical to the previous state")); } // Check if each modified field satisfies at least one applicable rule across all roles let all_fields_validated = modified_fields.iter().all(|field| { // Collect applicable rules from all roles for the current field let applicable_roles: Vec = self.roles .iter() .filter_map(|(role_name, role_def)| { // We allow for a special case with a role that works only for initial state // That's optional though if previous_state.is_some() && *role_name == crate::SpecialRoles::DEMIURGE.to_string() { return None; } if *role_name == crate::SpecialRoles::APOPHIS.to_string() { return None; } // We handle destructions separately let mut filtered_role_def = role_def.clone(); let rules = filtered_role_def.get_applicable_rules(field); filtered_role_def.validation_rules = rules.into_iter().map(|r| r.clone()).collect(); if filtered_role_def.validation_rules.is_empty() { None } else { Some(filtered_role_def) } }) .collect(); if applicable_roles.is_empty() { return false; // No rules apply to this field, consider it invalid } applicable_roles.into_iter().any(|role_def| { role_def.validation_rules.iter().any(|rule| { rule.is_satisfied( field, self.state_id, &self.validation_tokens, &role_def.members, ).is_ok() }) }) }); if all_fields_validated { Ok(()) } else { Err(anyhow::anyhow!("Not enough valid proofs")) } } pub fn is_empty(&self) -> bool { self.state_id == [0u8; 32] } pub fn get_fields_to_validate_for_member(&self, member: &Member) -> anyhow::Result> { let mut res: HashSet = HashSet::new(); // Are we in that role? for (_, role_def) in self.roles.iter() { if !role_def.members.contains(member) { continue; } else { // what are the fields we can modify? for rule in &role_def.validation_rules { if rule.allows_modification() { res.extend(rule.fields.iter().map(|f| f.clone())); } } } } Ok(res.into_iter().collect()) } } /// A process is basically a succession of states /// The latest state MUST be an empty state with only the commited_in field set at the last unspent outpoint #[derive(Debug, Default, Clone, PartialEq, Serialize, Deserialize, Tsify)] #[tsify(into_wasm_abi, from_wasm_abi)] pub struct Process { states: Vec, } impl Process { pub fn new( commited_in: OutPoint ) -> Self { let empty_state = ProcessState { commited_in, ..Default::default() }; Self { states: vec![empty_state], } } pub fn get_process_id(&self) -> anyhow::Result { Ok(self.states.get(0).ok_or(anyhow::Error::msg("Empty state list"))?.commited_in) } pub fn get_process_tip(&self) -> anyhow::Result { Ok(self.states.last().ok_or(anyhow::Error::msg("Empty state list"))?.commited_in) } pub fn get_last_unspent_outpoint(&self) -> anyhow::Result { if self.states.is_empty() { return Err(anyhow::Error::msg("Empty Process")); } let last_state = self.states.last().unwrap(); Ok(last_state.commited_in) } pub fn update_states_tip(&mut self, new_commitment: OutPoint) -> anyhow::Result<()> { if self.states.is_empty() { return Err(anyhow::Error::msg("Empty Process")); } let last_value = self.states.last().unwrap(); if !last_value.is_empty() { return Err(anyhow::Error::msg("Last value should be empty")); } if last_value.commited_in == new_commitment { return Err(anyhow::Error::msg("new_commitment is the same than existing tip")); } // Before updating we make sure that we only have one concurrent state let concurrent_states = self.get_latest_concurrent_states()?; if concurrent_states.len() != 2 { return Err(anyhow::Error::msg("We must have exactly one state for the current tip")); } // Replace the existing tip let new_tip = ProcessState { commited_in: new_commitment, ..Default::default() }; let _ = self.states.pop().unwrap(); self.states.push(new_tip); Ok(()) } /// We want to insert a new state that would be commited by the last UTXO /// The new state *must* have the same commited_in than the last empty one /// We want to always keep an empty state with only the latest unspent commited_in value at the last position pub fn insert_concurrent_state(&mut self, new_state: ProcessState) -> anyhow::Result<()> { if self.states.is_empty() { return Err(anyhow::Error::msg("Empty Process")); } let last_value = self.states.last().unwrap(); if !last_value.is_empty() { return Err(anyhow::Error::msg("Last value should be empty")); } if last_value.commited_in != new_state.commited_in { return Err(anyhow::Error::msg("A concurrent state must have the same commited in than the tip of the states")); } let empty_state = self.states.pop().unwrap(); self.states.push(new_state); // We always keep an empty state at the end self.states.push(empty_state); Ok(()) } pub fn get_state_at(&self, index: usize) -> Option<&ProcessState> { self.states.get(index) } pub fn get_state_at_mut(&mut self, index: usize) -> Option<&mut ProcessState> { self.states.get_mut(index) } pub fn get_latest_state(&self) -> Option<&ProcessState> { self.states.last() } pub fn get_latest_state_mut(&mut self) -> Option<&mut ProcessState> { self.states.last_mut() } /// If `state` is a concurrent state, parent is the last commited one /// Otherwise it's just the state commited before /// If it's the initial state we return `None` pub fn get_parent_state(&self, target_commited_in: &OutPoint) -> Option<&ProcessState> { let tip = self.get_process_tip().ok()?; // Use `?` for cleaner error handling. // If the target is the current tip, return the last committed state. if tip == *target_commited_in { return self.get_latest_commited_state(); } // Iterate over the states to find the parent. let mut parent_state = None; for state in &self.states { // Check if the current state's `commited_in` matches the target. if state.commited_in == *target_commited_in { return parent_state; // Return the parent state if found. } // Update the parent_state to the current state. parent_state = Some(state); } // Return `None` if no matching state is found. None } pub fn get_state_for_id(&self, state_id: &[u8; 32]) -> anyhow::Result<&ProcessState> { if self.get_number_of_states() == 0 { // This should never happen, but we better get rid of it now return Err(anyhow::Error::msg("process is empty".to_owned())); } for p in &self.states { if *state_id == p.state_id { return Ok(p); } } return Err(anyhow::Error::msg("No state for this merkle root")); } pub fn get_state_for_id_mut(&mut self, state_id: &[u8; 32]) -> anyhow::Result<&mut ProcessState> { if self.get_number_of_states() == 0 { // This should never happen, but we better get rid of it now return Err(anyhow::Error::msg("process is empty".to_owned())); } for p in &mut self.states { if *state_id == p.state_id { return Ok(p); } } return Err(anyhow::Error::msg("No state for this merkle root")); } /// This is useful when multiple unvalidated states are pending waiting for enough validations /// It returns the latest state and all the previous states that have the same commited_in /// It means that all the returned states are unvalidated and except for the one that get validated they will be pruned pub fn get_latest_concurrent_states(&self) -> anyhow::Result> { if self.get_number_of_states() == 0 { // This should never happen, but we better get rid of it now return Err(anyhow::Error::msg("process is empty".to_owned())); } let mut states = vec![]; let mut previous_commited_in = OutPoint::null(); // We iterate backwards until we find a state that has a different commited_in for state in self.states.iter().rev() { if previous_commited_in == OutPoint::null() { previous_commited_in = state.commited_in; } else if previous_commited_in != state.commited_in { break; } states.push(state); } Ok(states) } pub fn get_latest_concurrent_states_mut(&mut self) -> anyhow::Result> { if self.get_number_of_states() == 0 { // This should never happen, but we better get rid of it now return Err(anyhow::Error::msg("process is empty".to_owned())); } let mut states = vec![]; let mut previous_commited_in = OutPoint::null(); // We iterate backwards until we find a state that has a different commited_in for state in self.states.iter_mut().rev() { if previous_commited_in == OutPoint::null() { previous_commited_in = state.commited_in; } else if previous_commited_in != state.commited_in { break; } states.push(state); } Ok(states) } pub fn remove_all_concurrent_states(&mut self) -> anyhow::Result> { if self.get_number_of_states() == 0 { // This should never happen, but we better get rid of it now return Err(anyhow::Error::msg("process is empty".to_owned())); } let empty_state = self.states.pop().unwrap(); let last_commitment_outpoint = empty_state.commited_in; if let Some(split_index) = self.states.iter().position(|state| state.commited_in == last_commitment_outpoint) { let removed = self.states.split_off(split_index); // We make sure we always have an empty state at the end self.states.push(empty_state); Ok(removed) } else { // This could happen if we weren't aware there was pending concurrent updates // We push the empty state back and return an empty vec self.states.push(empty_state); Ok(vec![]) } } pub fn get_latest_commited_state(&self) -> Option<&ProcessState> { if self.states.is_empty() { return None; } let last_state = self.states.last().unwrap(); debug_assert!(last_state.is_empty()); // Last state must always be empty // We look for the last commited in before all the pending states let latest_outpoint = last_state.commited_in; return self .states .iter() .rev() .find(|s| s.commited_in != latest_outpoint); } pub fn get_state_index(&self, state: &ProcessState) -> Option { // Get the commited_in value of the provided state let target_commited_in = state.commited_in; // Find the index of the first state with the same commited_in value self.states .iter() .position(|s| s.commited_in == target_commited_in) } pub fn get_number_of_states(&self) -> usize { self.states.len() } } pub static CACHEDPROCESSES: OnceLock>> = OnceLock::new(); pub fn lock_processes() -> Result>, anyhow::Error> { CACHEDPROCESSES .get_or_init(|| Mutex::new(HashMap::new())) .lock_anyhow() } pub fn check_tx_for_process_updates(tx: &Transaction) -> anyhow::Result { let mut processes = lock_processes()?; for (outpoint, process) in &mut *processes { let process_tip = if let Ok(tip) = process.get_process_tip() { tip } else { continue }; for input in &tx.input { if process_tip == input.previous_output { log::debug!("Find a match for process tip {}", process_tip); // This transaction commits a new state let last_output = &tx.output.get(tx.output.len()-1).unwrap().script_pubkey; let mut state_id = [0u8; 32]; if last_output.is_op_return() { if last_output.as_bytes().len() != 34 { return Err(anyhow::Error::msg("commited data is not 32B long")); } state_id.clone_from_slice(&last_output.as_bytes()[2..]); } else { return Err(anyhow::Error::msg("last output must be op_return")); } // Check if we know about the commited state let new_state: ProcessState; if let Ok(commited_state) = process.get_state_for_id(&state_id) { new_state = commited_state.clone(); } else { new_state = ProcessState { commited_in: process_tip, state_id, ..Default::default() }; } // We update the process in place process.remove_all_concurrent_states()?; process.insert_concurrent_state(new_state)?; process.update_states_tip(OutPoint::new(tx.txid(), 0))?; return Ok(*outpoint) } } } Err(anyhow::Error::msg("Transaction doesn't spend any known commitment")) } #[cfg(test)] mod tests { use std::str::FromStr; use serde_json::json; use sp_client::{ bitcoin::{secp256k1::SecretKey, Network, Txid}, silentpayments::utils::SilentPaymentAddress, spclient::{SpClient, SpWallet, SpendKey} }; use crate::pcd::{Member, ValidationRule}; use super::*; fn create_alice_wallet() -> SpWallet { SpWallet::new( SpClient::new( "default".to_owned(), SecretKey::from_str( "a67fb6bf5639efd0aeb19c1c584dd658bceda87660ef1088d4a29d2e77846973", ) .unwrap(), SpendKey::Secret( SecretKey::from_str( "a1e4e7947accf33567e716c9f4d186f26398660e36cf6d2e711af64b3518e65c", ) .unwrap(), ), None, Network::Signet, ) .unwrap(), None, vec![], ) .unwrap() } fn create_bob_wallet() -> SpWallet { SpWallet::new( SpClient::new( "default".to_owned(), SecretKey::from_str( "4d9f62b2340de3f0bafd671b78b19edcfded918c4106baefd34512f12f520e9b", ) .unwrap(), SpendKey::Secret( SecretKey::from_str( "dafb99602721577997a6fe3da54f86fd113b1b58f0c9a04783d486f87083a32e", ) .unwrap(), ), None, Network::Signet, ) .unwrap(), None, vec![], ) .unwrap() } fn create_carol_wallet() -> SpWallet { SpWallet::new( SpClient::new( "default".to_owned(), SecretKey::from_str( "e4a5906eaa1a7ab24d5fc8d9b600d47f79caa6511c056c111677b7a33e62c5e9", ) .unwrap(), SpendKey::Secret( SecretKey::from_str( "e4c282e14668af1435e39df78403a7b406a791e3c6e666295496a6a865ade162", ) .unwrap(), ), None, Network::Signet, ) .unwrap(), None, vec![], ) .unwrap() } fn create_dave_wallet() -> SpWallet { SpWallet::new( SpClient::new( "default".to_owned(), SecretKey::from_str( "261d5f9ae4d2b0d8b17ed0c52bd2be7dbce14d9ac1f0f1d4904d3ca7df03766d", ) .unwrap(), SpendKey::Secret( SecretKey::from_str( "8441e2adbb39736f384617fafc61e0d894bf3a5c2b69801fd4476bdcce04fb59", ) .unwrap(), ), None, Network::Signet, ) .unwrap(), None, vec![], ) .unwrap() } fn dummy_process_state() -> ProcessState { let alice_wallet = create_alice_wallet(); let bob_wallet = create_bob_wallet(); let carol_wallet = create_carol_wallet(); let dave_wallet = create_dave_wallet(); let alice_address = SilentPaymentAddress::try_from(alice_wallet.get_client().get_receiving_address()) .unwrap(); let bob_address = SilentPaymentAddress::try_from(bob_wallet.get_client().get_receiving_address()) .unwrap(); let carol_address = SilentPaymentAddress::try_from(carol_wallet.get_client().get_receiving_address()) .unwrap(); let dave_address = SilentPaymentAddress::try_from(dave_wallet.get_client().get_receiving_address()) .unwrap(); let alice_bob = Member::new(vec![alice_address, bob_address]).unwrap(); let carol = Member::new(vec![carol_address]).unwrap(); let dave = Member::new(vec![dave_address]).unwrap(); let validation_rule1 = ValidationRule::new(1.0, vec!["field1".to_owned()], 0.5).unwrap(); let validation_rule2 = ValidationRule::new(1.0, vec!["field2".to_owned()], 0.5).unwrap(); let validation_rule3 = ValidationRule::new(1.0, vec!["roles".to_owned()], 0.5).unwrap(); let validation_rule4 = ValidationRule::new(1.0, vec!["public1".to_owned(), "public2".to_owned()], 0.5).unwrap(); let apophis_rule = ValidationRule::new(1.0, vec!["".to_owned()], 1.0).unwrap(); let role_def1 = RoleDefinition { members: vec![alice_bob.clone()], validation_rules: vec![validation_rule1], storages: vec![] }; let role_def2 = RoleDefinition { members: vec![carol], validation_rules: vec![validation_rule2], storages: vec![] }; let role_def_roles = RoleDefinition { members: vec![alice_bob.clone()], validation_rules: vec![validation_rule3], storages: vec![] }; let role_def_public_data = RoleDefinition { members: vec![alice_bob], validation_rules: vec![validation_rule4], storages: vec![] }; let role_def_apophis = RoleDefinition { members: vec![dave], validation_rules: vec![apophis_rule], storages: vec![] }; let roles: BTreeMap = BTreeMap::from([ ("role1".to_owned(), role_def1), ("role2".to_owned(), role_def2), ("role_roles".to_owned(), role_def_roles), ("role_public_data".to_owned(), role_def_public_data), ("apophis".to_owned(), role_def_apophis) ]); let clear_pcd: BTreeMap = serde_json::from_value(json!({ "field1": "value1", "field2": "value2", })).unwrap(); let outpoint = OutPoint::null(); let public_data: BTreeMap = serde_json::from_value(json!({ "public1": "public1", "public2": "public2", })).unwrap(); ProcessState::new(outpoint, Pcd::new(clear_pcd), Pcd::new(public_data), Roles::new(roles)).unwrap() } #[test] fn test_error_no_proofs() { let state = dummy_process_state(); let result = state.is_valid(None); assert!(result.is_err()); assert_eq!( result.unwrap_err().to_string(), "Can't validate a state with no proofs attached" ); } #[test] fn test_error_identical_previous_state() { let mut state = dummy_process_state(); // We sign with a random key let signing_key = SecretKey::from_str("39b2a765dc93e02da04a0e9300224b4f99fa7b83cfae49036dff58613fd3277c") .unwrap(); let message_hash = state.get_message_hash(true).unwrap(); state.validation_tokens.push(Proof::new(message_hash, signing_key)); let result = state.is_valid(Some(&state)); assert!(result.is_err()); assert_eq!( result.unwrap_err().to_string(), "State is identical to the previous state" ); } #[test] /// We provide a proof signed with a key that is not the spending key for either alice or bob fn test_error_invalid_proof() { let mut state = dummy_process_state(); // We sign with a random key let signing_key = SecretKey::from_str("39b2a765dc93e02da04a0e9300224b4f99fa7b83cfae49036dff58613fd3277c") .unwrap(); let message_hash = state.get_message_hash(true).unwrap(); state.validation_tokens.push(Proof::new(message_hash, signing_key)); let result = state.is_valid(None); assert!(result.is_err()); assert_eq!(result.unwrap_err().to_string(), "Not enough valid proofs"); } #[test] /// Carol signs alone for an init state fn test_error_not_enough_signatures() { let mut state = dummy_process_state(); // We sign with Carol key let carol_key: SecretKey = create_carol_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let message_hash = state.get_message_hash(true).unwrap(); state.validation_tokens.push(Proof::new(message_hash, carol_key)); let result = state.is_valid(None); assert!(result.is_err()); assert_eq!(result.unwrap_err().to_string(), "Not enough valid proofs"); } #[test] /// Alice signs alone for her fields in an init state fn test_valid_just_enough_signatures() { let mut state = dummy_process_state(); // We sign with Alice and Carol keys let alice_key: SecretKey = create_alice_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let carol_key: SecretKey = create_carol_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let message_hash = state.get_message_hash(true).unwrap(); state.validation_tokens.push(Proof::new(message_hash, alice_key)); state.validation_tokens.push(Proof::new(message_hash, carol_key)); let result = state.is_valid(None); assert!(result.is_ok()); } #[test] /// everyone signs for everything fn test_valid_all_signatures() { let mut state = dummy_process_state(); let alice_key: SecretKey = create_alice_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let bob_key: SecretKey = create_bob_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let carol_key: SecretKey = create_carol_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let message_hash = state.get_message_hash(true).unwrap(); state.validation_tokens.push(Proof::new(message_hash, alice_key)); state.validation_tokens.push(Proof::new(message_hash, bob_key)); state.validation_tokens.push(Proof::new(message_hash, carol_key)); let result = state.is_valid(None); assert!(result.is_ok()); } #[test] /// Carol tries to obliterate the process but she's not apophis fn test_error_invalid_obliteration() { let mut state = dummy_process_state(); let mut process = Process::new(state.commited_in); process.insert_concurrent_state(state.clone()).unwrap(); // We simulate a first commitment process.update_states_tip( OutPoint::new( Txid::from_str( "cbeb4455f8d11848809bacd59bfd570243dbe7c4e9a340fa949aae3020fdb127" ).unwrap() , 0 ) ).unwrap(); // Now we take the last empty state and try to invalidate it let empty_state = process.get_state_for_id(&[0u8; 32]).unwrap(); let carol_key: SecretKey = create_carol_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let message_hash = empty_state.get_message_hash(true).unwrap(); state.validation_tokens.push(Proof::new(message_hash, carol_key)); let result = state.is_valid(None); assert!(result.is_err()); } #[test] /// Dave signs to obliterate the process fn test_valid_obliteration() { let mut state = dummy_process_state(); let mut process = Process::new(state.commited_in); process.insert_concurrent_state(state.clone()).unwrap(); // We simulate a first commitment process.update_states_tip( OutPoint::new( Txid::from_str( "cbeb4455f8d11848809bacd59bfd570243dbe7c4e9a340fa949aae3020fdb127" ).unwrap() , 0 ) ).unwrap(); // Now we take the last empty state and try to invalidate it let empty_state = process.get_state_for_id(&[0u8; 32]).unwrap(); let dave_key: SecretKey = create_dave_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let message_hash = empty_state.get_message_hash(true).unwrap(); state.validation_tokens.push(Proof::new(message_hash, dave_key)); let result = state.is_valid(None); assert!(result.is_ok()); } #[test] /// Carol refuses change for her part fn test_error_carol_votes_no() { let mut state = dummy_process_state(); let alice_key: SecretKey = create_alice_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let bob_key: SecretKey = create_bob_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let carol_key: SecretKey = create_carol_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let message_hash_yes = state.get_message_hash(true).unwrap(); let message_hash_no = state.get_message_hash(false).unwrap(); state.validation_tokens.push(Proof::new(message_hash_yes, alice_key)); state.validation_tokens.push(Proof::new(message_hash_yes, bob_key)); state.validation_tokens.push(Proof::new(message_hash_no, carol_key)); let result = state.is_valid(None); assert!(result.is_err()); assert_eq!(result.unwrap_err().to_string(), "Not enough valid proofs"); } #[test] /// Bob refuses change for his part, but Alice is enough to reach quorum fn test_valid_bob_votes_no() { let mut state = dummy_process_state(); let alice_key: SecretKey = create_alice_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let bob_key: SecretKey = create_bob_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let carol_key: SecretKey = create_carol_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let message_hash_yes = state.get_message_hash(true).unwrap(); let message_hash_no = state.get_message_hash(false).unwrap(); state.validation_tokens.push(Proof::new(message_hash_yes, alice_key)); state.validation_tokens.push(Proof::new(message_hash_no, bob_key)); state.validation_tokens.push(Proof::new(message_hash_yes, carol_key)); let result = state.is_valid(None); assert!(result.is_ok()); } #[test] /// Everyone signs, and we have a previous state fn test_valid_everyone_signs_with_prev_state() { let state = dummy_process_state(); let mut new_state = state.clone(); let key_to_modify = state.pcd_commitment.keys().into_iter().next().unwrap(); new_state.update_value(key_to_modify.as_str(), &Value::String("new_value1".to_string())).unwrap(); let alice_key: SecretKey = create_alice_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let bob_key: SecretKey = create_bob_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let carol_key: SecretKey = create_carol_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let message_hash = new_state.get_message_hash(true).unwrap(); new_state.validation_tokens.push(Proof::new(message_hash, alice_key)); new_state.validation_tokens.push(Proof::new(message_hash, bob_key)); new_state.validation_tokens.push(Proof::new(message_hash, carol_key)); let result = new_state.is_valid(Some(&state)); assert!(result.is_ok()); } #[test] /// Only Carol signs, but she doesn't have modification rights on modified field fn test_error_not_right_signatures_with_prev_state() { let state = dummy_process_state(); let mut new_state = state.clone(); let key_to_modify = state.pcd_commitment.keys().into_iter().next().unwrap(); new_state.update_value(key_to_modify.as_str(), &Value::String("new_value1".to_string())).unwrap(); let carol_key: SecretKey = create_carol_wallet() .get_client() .get_spend_key() .try_into() .unwrap(); let message_hash = new_state.get_message_hash(true).unwrap(); new_state.validation_tokens.push(Proof::new(message_hash, carol_key)); let result = new_state.is_valid(Some(&state)); assert!(result.is_err()); } }