2480 lines
65 KiB
JavaScript
2480 lines
65 KiB
JavaScript
"use strict";
|
|
var __defProp = Object.defineProperty;
|
|
var __getOwnPropDesc = Object.getOwnPropertyDescriptor;
|
|
var __getOwnPropNames = Object.getOwnPropertyNames;
|
|
var __hasOwnProp = Object.prototype.hasOwnProperty;
|
|
var __name = (target, value) => __defProp(target, "name", { value, configurable: true });
|
|
var __export = (target, all) => {
|
|
for (var name in all)
|
|
__defProp(target, name, { get: all[name], enumerable: true });
|
|
};
|
|
var __copyProps = (to, from, except, desc) => {
|
|
if (from && typeof from === "object" || typeof from === "function") {
|
|
for (let key of __getOwnPropNames(from))
|
|
if (!__hasOwnProp.call(to, key) && key !== except)
|
|
__defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable });
|
|
}
|
|
return to;
|
|
};
|
|
var __toCommonJS = (mod2) => __copyProps(__defProp({}, "__esModule", { value: true }), mod2);
|
|
|
|
// src/runtime/index-browser.ts
|
|
var index_browser_exports = {};
|
|
__export(index_browser_exports, {
|
|
Decimal: () => decimal_default,
|
|
makeStrictEnum: () => makeStrictEnum,
|
|
objectEnumValues: () => objectEnumValues
|
|
});
|
|
module.exports = __toCommonJS(index_browser_exports);
|
|
|
|
// src/runtime/object-enums.ts
|
|
var secret = Symbol();
|
|
var representations = /* @__PURE__ */ new WeakMap();
|
|
var ObjectEnumValue = class {
|
|
constructor(arg) {
|
|
if (arg === secret) {
|
|
representations.set(this, `Prisma.${this._getName()}`);
|
|
} else {
|
|
representations.set(this, `new Prisma.${this._getNamespace()}.${this._getName()}()`);
|
|
}
|
|
}
|
|
_getName() {
|
|
return this.constructor.name;
|
|
}
|
|
toString() {
|
|
return representations.get(this);
|
|
}
|
|
};
|
|
__name(ObjectEnumValue, "ObjectEnumValue");
|
|
var NullTypesEnumValue = class extends ObjectEnumValue {
|
|
_getNamespace() {
|
|
return "NullTypes";
|
|
}
|
|
};
|
|
__name(NullTypesEnumValue, "NullTypesEnumValue");
|
|
var DbNull = class extends NullTypesEnumValue {
|
|
};
|
|
__name(DbNull, "DbNull");
|
|
var JsonNull = class extends NullTypesEnumValue {
|
|
};
|
|
__name(JsonNull, "JsonNull");
|
|
var AnyNull = class extends NullTypesEnumValue {
|
|
};
|
|
__name(AnyNull, "AnyNull");
|
|
var objectEnumValues = {
|
|
classes: {
|
|
DbNull,
|
|
JsonNull,
|
|
AnyNull
|
|
},
|
|
instances: {
|
|
DbNull: new DbNull(secret),
|
|
JsonNull: new JsonNull(secret),
|
|
AnyNull: new AnyNull(secret)
|
|
}
|
|
};
|
|
|
|
// src/runtime/strictEnum.ts
|
|
var allowList = /* @__PURE__ */ new Set([
|
|
"toJSON",
|
|
"asymmetricMatch",
|
|
Symbol.iterator,
|
|
Symbol.toStringTag,
|
|
Symbol.isConcatSpreadable,
|
|
Symbol.toPrimitive
|
|
]);
|
|
function makeStrictEnum(definition) {
|
|
return new Proxy(definition, {
|
|
get(target, property) {
|
|
if (property in target) {
|
|
return target[property];
|
|
}
|
|
if (allowList.has(property)) {
|
|
return void 0;
|
|
}
|
|
throw new TypeError(`Invalid enum value: ${String(property)}`);
|
|
}
|
|
});
|
|
}
|
|
__name(makeStrictEnum, "makeStrictEnum");
|
|
|
|
// ../../node_modules/.pnpm/decimal.js@10.4.2/node_modules/decimal.js/decimal.mjs
|
|
var EXP_LIMIT = 9e15;
|
|
var MAX_DIGITS = 1e9;
|
|
var NUMERALS = "0123456789abcdef";
|
|
var LN10 = "2.3025850929940456840179914546843642076011014886287729760333279009675726096773524802359972050895982983419677840422862486334095254650828067566662873690987816894829072083255546808437998948262331985283935053089653777326288461633662222876982198867465436674744042432743651550489343149393914796194044002221051017141748003688084012647080685567743216228355220114804663715659121373450747856947683463616792101806445070648000277502684916746550586856935673420670581136429224554405758925724208241314695689016758940256776311356919292033376587141660230105703089634572075440370847469940168269282808481184289314848524948644871927809676271275775397027668605952496716674183485704422507197965004714951050492214776567636938662976979522110718264549734772662425709429322582798502585509785265383207606726317164309505995087807523710333101197857547331541421808427543863591778117054309827482385045648019095610299291824318237525357709750539565187697510374970888692180205189339507238539205144634197265287286965110862571492198849978748873771345686209167058";
|
|
var PI = "3.1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489549303819644288109756659334461284756482337867831652712019091456485669234603486104543266482133936072602491412737245870066063155881748815209209628292540917153643678925903600113305305488204665213841469519415116094330572703657595919530921861173819326117931051185480744623799627495673518857527248912279381830119491298336733624406566430860213949463952247371907021798609437027705392171762931767523846748184676694051320005681271452635608277857713427577896091736371787214684409012249534301465495853710507922796892589235420199561121290219608640344181598136297747713099605187072113499999983729780499510597317328160963185950244594553469083026425223082533446850352619311881710100031378387528865875332083814206171776691473035982534904287554687311595628638823537875937519577818577805321712268066130019278766111959092164201989380952572010654858632789";
|
|
var DEFAULTS = {
|
|
precision: 20,
|
|
rounding: 4,
|
|
modulo: 1,
|
|
toExpNeg: -7,
|
|
toExpPos: 21,
|
|
minE: -EXP_LIMIT,
|
|
maxE: EXP_LIMIT,
|
|
crypto: false
|
|
};
|
|
var inexact;
|
|
var quadrant;
|
|
var external = true;
|
|
var decimalError = "[DecimalError] ";
|
|
var invalidArgument = decimalError + "Invalid argument: ";
|
|
var precisionLimitExceeded = decimalError + "Precision limit exceeded";
|
|
var cryptoUnavailable = decimalError + "crypto unavailable";
|
|
var tag = "[object Decimal]";
|
|
var mathfloor = Math.floor;
|
|
var mathpow = Math.pow;
|
|
var isBinary = /^0b([01]+(\.[01]*)?|\.[01]+)(p[+-]?\d+)?$/i;
|
|
var isHex = /^0x([0-9a-f]+(\.[0-9a-f]*)?|\.[0-9a-f]+)(p[+-]?\d+)?$/i;
|
|
var isOctal = /^0o([0-7]+(\.[0-7]*)?|\.[0-7]+)(p[+-]?\d+)?$/i;
|
|
var isDecimal = /^(\d+(\.\d*)?|\.\d+)(e[+-]?\d+)?$/i;
|
|
var BASE = 1e7;
|
|
var LOG_BASE = 7;
|
|
var MAX_SAFE_INTEGER = 9007199254740991;
|
|
var LN10_PRECISION = LN10.length - 1;
|
|
var PI_PRECISION = PI.length - 1;
|
|
var P = { toStringTag: tag };
|
|
P.absoluteValue = P.abs = function() {
|
|
var x = new this.constructor(this);
|
|
if (x.s < 0)
|
|
x.s = 1;
|
|
return finalise(x);
|
|
};
|
|
P.ceil = function() {
|
|
return finalise(new this.constructor(this), this.e + 1, 2);
|
|
};
|
|
P.clampedTo = P.clamp = function(min2, max2) {
|
|
var k, x = this, Ctor = x.constructor;
|
|
min2 = new Ctor(min2);
|
|
max2 = new Ctor(max2);
|
|
if (!min2.s || !max2.s)
|
|
return new Ctor(NaN);
|
|
if (min2.gt(max2))
|
|
throw Error(invalidArgument + max2);
|
|
k = x.cmp(min2);
|
|
return k < 0 ? min2 : x.cmp(max2) > 0 ? max2 : new Ctor(x);
|
|
};
|
|
P.comparedTo = P.cmp = function(y) {
|
|
var i, j, xdL, ydL, x = this, xd = x.d, yd = (y = new x.constructor(y)).d, xs = x.s, ys = y.s;
|
|
if (!xd || !yd) {
|
|
return !xs || !ys ? NaN : xs !== ys ? xs : xd === yd ? 0 : !xd ^ xs < 0 ? 1 : -1;
|
|
}
|
|
if (!xd[0] || !yd[0])
|
|
return xd[0] ? xs : yd[0] ? -ys : 0;
|
|
if (xs !== ys)
|
|
return xs;
|
|
if (x.e !== y.e)
|
|
return x.e > y.e ^ xs < 0 ? 1 : -1;
|
|
xdL = xd.length;
|
|
ydL = yd.length;
|
|
for (i = 0, j = xdL < ydL ? xdL : ydL; i < j; ++i) {
|
|
if (xd[i] !== yd[i])
|
|
return xd[i] > yd[i] ^ xs < 0 ? 1 : -1;
|
|
}
|
|
return xdL === ydL ? 0 : xdL > ydL ^ xs < 0 ? 1 : -1;
|
|
};
|
|
P.cosine = P.cos = function() {
|
|
var pr, rm, x = this, Ctor = x.constructor;
|
|
if (!x.d)
|
|
return new Ctor(NaN);
|
|
if (!x.d[0])
|
|
return new Ctor(1);
|
|
pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE;
|
|
Ctor.rounding = 1;
|
|
x = cosine(Ctor, toLessThanHalfPi(Ctor, x));
|
|
Ctor.precision = pr;
|
|
Ctor.rounding = rm;
|
|
return finalise(quadrant == 2 || quadrant == 3 ? x.neg() : x, pr, rm, true);
|
|
};
|
|
P.cubeRoot = P.cbrt = function() {
|
|
var e, m, n, r, rep, s, sd, t, t3, t3plusx, x = this, Ctor = x.constructor;
|
|
if (!x.isFinite() || x.isZero())
|
|
return new Ctor(x);
|
|
external = false;
|
|
s = x.s * mathpow(x.s * x, 1 / 3);
|
|
if (!s || Math.abs(s) == 1 / 0) {
|
|
n = digitsToString(x.d);
|
|
e = x.e;
|
|
if (s = (e - n.length + 1) % 3)
|
|
n += s == 1 || s == -2 ? "0" : "00";
|
|
s = mathpow(n, 1 / 3);
|
|
e = mathfloor((e + 1) / 3) - (e % 3 == (e < 0 ? -1 : 2));
|
|
if (s == 1 / 0) {
|
|
n = "5e" + e;
|
|
} else {
|
|
n = s.toExponential();
|
|
n = n.slice(0, n.indexOf("e") + 1) + e;
|
|
}
|
|
r = new Ctor(n);
|
|
r.s = x.s;
|
|
} else {
|
|
r = new Ctor(s.toString());
|
|
}
|
|
sd = (e = Ctor.precision) + 3;
|
|
for (; ; ) {
|
|
t = r;
|
|
t3 = t.times(t).times(t);
|
|
t3plusx = t3.plus(x);
|
|
r = divide(t3plusx.plus(x).times(t), t3plusx.plus(t3), sd + 2, 1);
|
|
if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) {
|
|
n = n.slice(sd - 3, sd + 1);
|
|
if (n == "9999" || !rep && n == "4999") {
|
|
if (!rep) {
|
|
finalise(t, e + 1, 0);
|
|
if (t.times(t).times(t).eq(x)) {
|
|
r = t;
|
|
break;
|
|
}
|
|
}
|
|
sd += 4;
|
|
rep = 1;
|
|
} else {
|
|
if (!+n || !+n.slice(1) && n.charAt(0) == "5") {
|
|
finalise(r, e + 1, 1);
|
|
m = !r.times(r).times(r).eq(x);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
external = true;
|
|
return finalise(r, e, Ctor.rounding, m);
|
|
};
|
|
P.decimalPlaces = P.dp = function() {
|
|
var w, d = this.d, n = NaN;
|
|
if (d) {
|
|
w = d.length - 1;
|
|
n = (w - mathfloor(this.e / LOG_BASE)) * LOG_BASE;
|
|
w = d[w];
|
|
if (w)
|
|
for (; w % 10 == 0; w /= 10)
|
|
n--;
|
|
if (n < 0)
|
|
n = 0;
|
|
}
|
|
return n;
|
|
};
|
|
P.dividedBy = P.div = function(y) {
|
|
return divide(this, new this.constructor(y));
|
|
};
|
|
P.dividedToIntegerBy = P.divToInt = function(y) {
|
|
var x = this, Ctor = x.constructor;
|
|
return finalise(divide(x, new Ctor(y), 0, 1, 1), Ctor.precision, Ctor.rounding);
|
|
};
|
|
P.equals = P.eq = function(y) {
|
|
return this.cmp(y) === 0;
|
|
};
|
|
P.floor = function() {
|
|
return finalise(new this.constructor(this), this.e + 1, 3);
|
|
};
|
|
P.greaterThan = P.gt = function(y) {
|
|
return this.cmp(y) > 0;
|
|
};
|
|
P.greaterThanOrEqualTo = P.gte = function(y) {
|
|
var k = this.cmp(y);
|
|
return k == 1 || k === 0;
|
|
};
|
|
P.hyperbolicCosine = P.cosh = function() {
|
|
var k, n, pr, rm, len, x = this, Ctor = x.constructor, one = new Ctor(1);
|
|
if (!x.isFinite())
|
|
return new Ctor(x.s ? 1 / 0 : NaN);
|
|
if (x.isZero())
|
|
return one;
|
|
pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
Ctor.precision = pr + Math.max(x.e, x.sd()) + 4;
|
|
Ctor.rounding = 1;
|
|
len = x.d.length;
|
|
if (len < 32) {
|
|
k = Math.ceil(len / 3);
|
|
n = (1 / tinyPow(4, k)).toString();
|
|
} else {
|
|
k = 16;
|
|
n = "2.3283064365386962890625e-10";
|
|
}
|
|
x = taylorSeries(Ctor, 1, x.times(n), new Ctor(1), true);
|
|
var cosh2_x, i = k, d8 = new Ctor(8);
|
|
for (; i--; ) {
|
|
cosh2_x = x.times(x);
|
|
x = one.minus(cosh2_x.times(d8.minus(cosh2_x.times(d8))));
|
|
}
|
|
return finalise(x, Ctor.precision = pr, Ctor.rounding = rm, true);
|
|
};
|
|
P.hyperbolicSine = P.sinh = function() {
|
|
var k, pr, rm, len, x = this, Ctor = x.constructor;
|
|
if (!x.isFinite() || x.isZero())
|
|
return new Ctor(x);
|
|
pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
Ctor.precision = pr + Math.max(x.e, x.sd()) + 4;
|
|
Ctor.rounding = 1;
|
|
len = x.d.length;
|
|
if (len < 3) {
|
|
x = taylorSeries(Ctor, 2, x, x, true);
|
|
} else {
|
|
k = 1.4 * Math.sqrt(len);
|
|
k = k > 16 ? 16 : k | 0;
|
|
x = x.times(1 / tinyPow(5, k));
|
|
x = taylorSeries(Ctor, 2, x, x, true);
|
|
var sinh2_x, d5 = new Ctor(5), d16 = new Ctor(16), d20 = new Ctor(20);
|
|
for (; k--; ) {
|
|
sinh2_x = x.times(x);
|
|
x = x.times(d5.plus(sinh2_x.times(d16.times(sinh2_x).plus(d20))));
|
|
}
|
|
}
|
|
Ctor.precision = pr;
|
|
Ctor.rounding = rm;
|
|
return finalise(x, pr, rm, true);
|
|
};
|
|
P.hyperbolicTangent = P.tanh = function() {
|
|
var pr, rm, x = this, Ctor = x.constructor;
|
|
if (!x.isFinite())
|
|
return new Ctor(x.s);
|
|
if (x.isZero())
|
|
return new Ctor(x);
|
|
pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
Ctor.precision = pr + 7;
|
|
Ctor.rounding = 1;
|
|
return divide(x.sinh(), x.cosh(), Ctor.precision = pr, Ctor.rounding = rm);
|
|
};
|
|
P.inverseCosine = P.acos = function() {
|
|
var halfPi, x = this, Ctor = x.constructor, k = x.abs().cmp(1), pr = Ctor.precision, rm = Ctor.rounding;
|
|
if (k !== -1) {
|
|
return k === 0 ? x.isNeg() ? getPi(Ctor, pr, rm) : new Ctor(0) : new Ctor(NaN);
|
|
}
|
|
if (x.isZero())
|
|
return getPi(Ctor, pr + 4, rm).times(0.5);
|
|
Ctor.precision = pr + 6;
|
|
Ctor.rounding = 1;
|
|
x = x.asin();
|
|
halfPi = getPi(Ctor, pr + 4, rm).times(0.5);
|
|
Ctor.precision = pr;
|
|
Ctor.rounding = rm;
|
|
return halfPi.minus(x);
|
|
};
|
|
P.inverseHyperbolicCosine = P.acosh = function() {
|
|
var pr, rm, x = this, Ctor = x.constructor;
|
|
if (x.lte(1))
|
|
return new Ctor(x.eq(1) ? 0 : NaN);
|
|
if (!x.isFinite())
|
|
return new Ctor(x);
|
|
pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
Ctor.precision = pr + Math.max(Math.abs(x.e), x.sd()) + 4;
|
|
Ctor.rounding = 1;
|
|
external = false;
|
|
x = x.times(x).minus(1).sqrt().plus(x);
|
|
external = true;
|
|
Ctor.precision = pr;
|
|
Ctor.rounding = rm;
|
|
return x.ln();
|
|
};
|
|
P.inverseHyperbolicSine = P.asinh = function() {
|
|
var pr, rm, x = this, Ctor = x.constructor;
|
|
if (!x.isFinite() || x.isZero())
|
|
return new Ctor(x);
|
|
pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
Ctor.precision = pr + 2 * Math.max(Math.abs(x.e), x.sd()) + 6;
|
|
Ctor.rounding = 1;
|
|
external = false;
|
|
x = x.times(x).plus(1).sqrt().plus(x);
|
|
external = true;
|
|
Ctor.precision = pr;
|
|
Ctor.rounding = rm;
|
|
return x.ln();
|
|
};
|
|
P.inverseHyperbolicTangent = P.atanh = function() {
|
|
var pr, rm, wpr, xsd, x = this, Ctor = x.constructor;
|
|
if (!x.isFinite())
|
|
return new Ctor(NaN);
|
|
if (x.e >= 0)
|
|
return new Ctor(x.abs().eq(1) ? x.s / 0 : x.isZero() ? x : NaN);
|
|
pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
xsd = x.sd();
|
|
if (Math.max(xsd, pr) < 2 * -x.e - 1)
|
|
return finalise(new Ctor(x), pr, rm, true);
|
|
Ctor.precision = wpr = xsd - x.e;
|
|
x = divide(x.plus(1), new Ctor(1).minus(x), wpr + pr, 1);
|
|
Ctor.precision = pr + 4;
|
|
Ctor.rounding = 1;
|
|
x = x.ln();
|
|
Ctor.precision = pr;
|
|
Ctor.rounding = rm;
|
|
return x.times(0.5);
|
|
};
|
|
P.inverseSine = P.asin = function() {
|
|
var halfPi, k, pr, rm, x = this, Ctor = x.constructor;
|
|
if (x.isZero())
|
|
return new Ctor(x);
|
|
k = x.abs().cmp(1);
|
|
pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
if (k !== -1) {
|
|
if (k === 0) {
|
|
halfPi = getPi(Ctor, pr + 4, rm).times(0.5);
|
|
halfPi.s = x.s;
|
|
return halfPi;
|
|
}
|
|
return new Ctor(NaN);
|
|
}
|
|
Ctor.precision = pr + 6;
|
|
Ctor.rounding = 1;
|
|
x = x.div(new Ctor(1).minus(x.times(x)).sqrt().plus(1)).atan();
|
|
Ctor.precision = pr;
|
|
Ctor.rounding = rm;
|
|
return x.times(2);
|
|
};
|
|
P.inverseTangent = P.atan = function() {
|
|
var i, j, k, n, px, t, r, wpr, x2, x = this, Ctor = x.constructor, pr = Ctor.precision, rm = Ctor.rounding;
|
|
if (!x.isFinite()) {
|
|
if (!x.s)
|
|
return new Ctor(NaN);
|
|
if (pr + 4 <= PI_PRECISION) {
|
|
r = getPi(Ctor, pr + 4, rm).times(0.5);
|
|
r.s = x.s;
|
|
return r;
|
|
}
|
|
} else if (x.isZero()) {
|
|
return new Ctor(x);
|
|
} else if (x.abs().eq(1) && pr + 4 <= PI_PRECISION) {
|
|
r = getPi(Ctor, pr + 4, rm).times(0.25);
|
|
r.s = x.s;
|
|
return r;
|
|
}
|
|
Ctor.precision = wpr = pr + 10;
|
|
Ctor.rounding = 1;
|
|
k = Math.min(28, wpr / LOG_BASE + 2 | 0);
|
|
for (i = k; i; --i)
|
|
x = x.div(x.times(x).plus(1).sqrt().plus(1));
|
|
external = false;
|
|
j = Math.ceil(wpr / LOG_BASE);
|
|
n = 1;
|
|
x2 = x.times(x);
|
|
r = new Ctor(x);
|
|
px = x;
|
|
for (; i !== -1; ) {
|
|
px = px.times(x2);
|
|
t = r.minus(px.div(n += 2));
|
|
px = px.times(x2);
|
|
r = t.plus(px.div(n += 2));
|
|
if (r.d[j] !== void 0)
|
|
for (i = j; r.d[i] === t.d[i] && i--; )
|
|
;
|
|
}
|
|
if (k)
|
|
r = r.times(2 << k - 1);
|
|
external = true;
|
|
return finalise(r, Ctor.precision = pr, Ctor.rounding = rm, true);
|
|
};
|
|
P.isFinite = function() {
|
|
return !!this.d;
|
|
};
|
|
P.isInteger = P.isInt = function() {
|
|
return !!this.d && mathfloor(this.e / LOG_BASE) > this.d.length - 2;
|
|
};
|
|
P.isNaN = function() {
|
|
return !this.s;
|
|
};
|
|
P.isNegative = P.isNeg = function() {
|
|
return this.s < 0;
|
|
};
|
|
P.isPositive = P.isPos = function() {
|
|
return this.s > 0;
|
|
};
|
|
P.isZero = function() {
|
|
return !!this.d && this.d[0] === 0;
|
|
};
|
|
P.lessThan = P.lt = function(y) {
|
|
return this.cmp(y) < 0;
|
|
};
|
|
P.lessThanOrEqualTo = P.lte = function(y) {
|
|
return this.cmp(y) < 1;
|
|
};
|
|
P.logarithm = P.log = function(base) {
|
|
var isBase10, d, denominator, k, inf, num, sd, r, arg = this, Ctor = arg.constructor, pr = Ctor.precision, rm = Ctor.rounding, guard = 5;
|
|
if (base == null) {
|
|
base = new Ctor(10);
|
|
isBase10 = true;
|
|
} else {
|
|
base = new Ctor(base);
|
|
d = base.d;
|
|
if (base.s < 0 || !d || !d[0] || base.eq(1))
|
|
return new Ctor(NaN);
|
|
isBase10 = base.eq(10);
|
|
}
|
|
d = arg.d;
|
|
if (arg.s < 0 || !d || !d[0] || arg.eq(1)) {
|
|
return new Ctor(d && !d[0] ? -1 / 0 : arg.s != 1 ? NaN : d ? 0 : 1 / 0);
|
|
}
|
|
if (isBase10) {
|
|
if (d.length > 1) {
|
|
inf = true;
|
|
} else {
|
|
for (k = d[0]; k % 10 === 0; )
|
|
k /= 10;
|
|
inf = k !== 1;
|
|
}
|
|
}
|
|
external = false;
|
|
sd = pr + guard;
|
|
num = naturalLogarithm(arg, sd);
|
|
denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd);
|
|
r = divide(num, denominator, sd, 1);
|
|
if (checkRoundingDigits(r.d, k = pr, rm)) {
|
|
do {
|
|
sd += 10;
|
|
num = naturalLogarithm(arg, sd);
|
|
denominator = isBase10 ? getLn10(Ctor, sd + 10) : naturalLogarithm(base, sd);
|
|
r = divide(num, denominator, sd, 1);
|
|
if (!inf) {
|
|
if (+digitsToString(r.d).slice(k + 1, k + 15) + 1 == 1e14) {
|
|
r = finalise(r, pr + 1, 0);
|
|
}
|
|
break;
|
|
}
|
|
} while (checkRoundingDigits(r.d, k += 10, rm));
|
|
}
|
|
external = true;
|
|
return finalise(r, pr, rm);
|
|
};
|
|
P.minus = P.sub = function(y) {
|
|
var d, e, i, j, k, len, pr, rm, xd, xe, xLTy, yd, x = this, Ctor = x.constructor;
|
|
y = new Ctor(y);
|
|
if (!x.d || !y.d) {
|
|
if (!x.s || !y.s)
|
|
y = new Ctor(NaN);
|
|
else if (x.d)
|
|
y.s = -y.s;
|
|
else
|
|
y = new Ctor(y.d || x.s !== y.s ? x : NaN);
|
|
return y;
|
|
}
|
|
if (x.s != y.s) {
|
|
y.s = -y.s;
|
|
return x.plus(y);
|
|
}
|
|
xd = x.d;
|
|
yd = y.d;
|
|
pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
if (!xd[0] || !yd[0]) {
|
|
if (yd[0])
|
|
y.s = -y.s;
|
|
else if (xd[0])
|
|
y = new Ctor(x);
|
|
else
|
|
return new Ctor(rm === 3 ? -0 : 0);
|
|
return external ? finalise(y, pr, rm) : y;
|
|
}
|
|
e = mathfloor(y.e / LOG_BASE);
|
|
xe = mathfloor(x.e / LOG_BASE);
|
|
xd = xd.slice();
|
|
k = xe - e;
|
|
if (k) {
|
|
xLTy = k < 0;
|
|
if (xLTy) {
|
|
d = xd;
|
|
k = -k;
|
|
len = yd.length;
|
|
} else {
|
|
d = yd;
|
|
e = xe;
|
|
len = xd.length;
|
|
}
|
|
i = Math.max(Math.ceil(pr / LOG_BASE), len) + 2;
|
|
if (k > i) {
|
|
k = i;
|
|
d.length = 1;
|
|
}
|
|
d.reverse();
|
|
for (i = k; i--; )
|
|
d.push(0);
|
|
d.reverse();
|
|
} else {
|
|
i = xd.length;
|
|
len = yd.length;
|
|
xLTy = i < len;
|
|
if (xLTy)
|
|
len = i;
|
|
for (i = 0; i < len; i++) {
|
|
if (xd[i] != yd[i]) {
|
|
xLTy = xd[i] < yd[i];
|
|
break;
|
|
}
|
|
}
|
|
k = 0;
|
|
}
|
|
if (xLTy) {
|
|
d = xd;
|
|
xd = yd;
|
|
yd = d;
|
|
y.s = -y.s;
|
|
}
|
|
len = xd.length;
|
|
for (i = yd.length - len; i > 0; --i)
|
|
xd[len++] = 0;
|
|
for (i = yd.length; i > k; ) {
|
|
if (xd[--i] < yd[i]) {
|
|
for (j = i; j && xd[--j] === 0; )
|
|
xd[j] = BASE - 1;
|
|
--xd[j];
|
|
xd[i] += BASE;
|
|
}
|
|
xd[i] -= yd[i];
|
|
}
|
|
for (; xd[--len] === 0; )
|
|
xd.pop();
|
|
for (; xd[0] === 0; xd.shift())
|
|
--e;
|
|
if (!xd[0])
|
|
return new Ctor(rm === 3 ? -0 : 0);
|
|
y.d = xd;
|
|
y.e = getBase10Exponent(xd, e);
|
|
return external ? finalise(y, pr, rm) : y;
|
|
};
|
|
P.modulo = P.mod = function(y) {
|
|
var q, x = this, Ctor = x.constructor;
|
|
y = new Ctor(y);
|
|
if (!x.d || !y.s || y.d && !y.d[0])
|
|
return new Ctor(NaN);
|
|
if (!y.d || x.d && !x.d[0]) {
|
|
return finalise(new Ctor(x), Ctor.precision, Ctor.rounding);
|
|
}
|
|
external = false;
|
|
if (Ctor.modulo == 9) {
|
|
q = divide(x, y.abs(), 0, 3, 1);
|
|
q.s *= y.s;
|
|
} else {
|
|
q = divide(x, y, 0, Ctor.modulo, 1);
|
|
}
|
|
q = q.times(y);
|
|
external = true;
|
|
return x.minus(q);
|
|
};
|
|
P.naturalExponential = P.exp = function() {
|
|
return naturalExponential(this);
|
|
};
|
|
P.naturalLogarithm = P.ln = function() {
|
|
return naturalLogarithm(this);
|
|
};
|
|
P.negated = P.neg = function() {
|
|
var x = new this.constructor(this);
|
|
x.s = -x.s;
|
|
return finalise(x);
|
|
};
|
|
P.plus = P.add = function(y) {
|
|
var carry, d, e, i, k, len, pr, rm, xd, yd, x = this, Ctor = x.constructor;
|
|
y = new Ctor(y);
|
|
if (!x.d || !y.d) {
|
|
if (!x.s || !y.s)
|
|
y = new Ctor(NaN);
|
|
else if (!x.d)
|
|
y = new Ctor(y.d || x.s === y.s ? x : NaN);
|
|
return y;
|
|
}
|
|
if (x.s != y.s) {
|
|
y.s = -y.s;
|
|
return x.minus(y);
|
|
}
|
|
xd = x.d;
|
|
yd = y.d;
|
|
pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
if (!xd[0] || !yd[0]) {
|
|
if (!yd[0])
|
|
y = new Ctor(x);
|
|
return external ? finalise(y, pr, rm) : y;
|
|
}
|
|
k = mathfloor(x.e / LOG_BASE);
|
|
e = mathfloor(y.e / LOG_BASE);
|
|
xd = xd.slice();
|
|
i = k - e;
|
|
if (i) {
|
|
if (i < 0) {
|
|
d = xd;
|
|
i = -i;
|
|
len = yd.length;
|
|
} else {
|
|
d = yd;
|
|
e = k;
|
|
len = xd.length;
|
|
}
|
|
k = Math.ceil(pr / LOG_BASE);
|
|
len = k > len ? k + 1 : len + 1;
|
|
if (i > len) {
|
|
i = len;
|
|
d.length = 1;
|
|
}
|
|
d.reverse();
|
|
for (; i--; )
|
|
d.push(0);
|
|
d.reverse();
|
|
}
|
|
len = xd.length;
|
|
i = yd.length;
|
|
if (len - i < 0) {
|
|
i = len;
|
|
d = yd;
|
|
yd = xd;
|
|
xd = d;
|
|
}
|
|
for (carry = 0; i; ) {
|
|
carry = (xd[--i] = xd[i] + yd[i] + carry) / BASE | 0;
|
|
xd[i] %= BASE;
|
|
}
|
|
if (carry) {
|
|
xd.unshift(carry);
|
|
++e;
|
|
}
|
|
for (len = xd.length; xd[--len] == 0; )
|
|
xd.pop();
|
|
y.d = xd;
|
|
y.e = getBase10Exponent(xd, e);
|
|
return external ? finalise(y, pr, rm) : y;
|
|
};
|
|
P.precision = P.sd = function(z) {
|
|
var k, x = this;
|
|
if (z !== void 0 && z !== !!z && z !== 1 && z !== 0)
|
|
throw Error(invalidArgument + z);
|
|
if (x.d) {
|
|
k = getPrecision(x.d);
|
|
if (z && x.e + 1 > k)
|
|
k = x.e + 1;
|
|
} else {
|
|
k = NaN;
|
|
}
|
|
return k;
|
|
};
|
|
P.round = function() {
|
|
var x = this, Ctor = x.constructor;
|
|
return finalise(new Ctor(x), x.e + 1, Ctor.rounding);
|
|
};
|
|
P.sine = P.sin = function() {
|
|
var pr, rm, x = this, Ctor = x.constructor;
|
|
if (!x.isFinite())
|
|
return new Ctor(NaN);
|
|
if (x.isZero())
|
|
return new Ctor(x);
|
|
pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
Ctor.precision = pr + Math.max(x.e, x.sd()) + LOG_BASE;
|
|
Ctor.rounding = 1;
|
|
x = sine(Ctor, toLessThanHalfPi(Ctor, x));
|
|
Ctor.precision = pr;
|
|
Ctor.rounding = rm;
|
|
return finalise(quadrant > 2 ? x.neg() : x, pr, rm, true);
|
|
};
|
|
P.squareRoot = P.sqrt = function() {
|
|
var m, n, sd, r, rep, t, x = this, d = x.d, e = x.e, s = x.s, Ctor = x.constructor;
|
|
if (s !== 1 || !d || !d[0]) {
|
|
return new Ctor(!s || s < 0 && (!d || d[0]) ? NaN : d ? x : 1 / 0);
|
|
}
|
|
external = false;
|
|
s = Math.sqrt(+x);
|
|
if (s == 0 || s == 1 / 0) {
|
|
n = digitsToString(d);
|
|
if ((n.length + e) % 2 == 0)
|
|
n += "0";
|
|
s = Math.sqrt(n);
|
|
e = mathfloor((e + 1) / 2) - (e < 0 || e % 2);
|
|
if (s == 1 / 0) {
|
|
n = "5e" + e;
|
|
} else {
|
|
n = s.toExponential();
|
|
n = n.slice(0, n.indexOf("e") + 1) + e;
|
|
}
|
|
r = new Ctor(n);
|
|
} else {
|
|
r = new Ctor(s.toString());
|
|
}
|
|
sd = (e = Ctor.precision) + 3;
|
|
for (; ; ) {
|
|
t = r;
|
|
r = t.plus(divide(x, t, sd + 2, 1)).times(0.5);
|
|
if (digitsToString(t.d).slice(0, sd) === (n = digitsToString(r.d)).slice(0, sd)) {
|
|
n = n.slice(sd - 3, sd + 1);
|
|
if (n == "9999" || !rep && n == "4999") {
|
|
if (!rep) {
|
|
finalise(t, e + 1, 0);
|
|
if (t.times(t).eq(x)) {
|
|
r = t;
|
|
break;
|
|
}
|
|
}
|
|
sd += 4;
|
|
rep = 1;
|
|
} else {
|
|
if (!+n || !+n.slice(1) && n.charAt(0) == "5") {
|
|
finalise(r, e + 1, 1);
|
|
m = !r.times(r).eq(x);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
external = true;
|
|
return finalise(r, e, Ctor.rounding, m);
|
|
};
|
|
P.tangent = P.tan = function() {
|
|
var pr, rm, x = this, Ctor = x.constructor;
|
|
if (!x.isFinite())
|
|
return new Ctor(NaN);
|
|
if (x.isZero())
|
|
return new Ctor(x);
|
|
pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
Ctor.precision = pr + 10;
|
|
Ctor.rounding = 1;
|
|
x = x.sin();
|
|
x.s = 1;
|
|
x = divide(x, new Ctor(1).minus(x.times(x)).sqrt(), pr + 10, 0);
|
|
Ctor.precision = pr;
|
|
Ctor.rounding = rm;
|
|
return finalise(quadrant == 2 || quadrant == 4 ? x.neg() : x, pr, rm, true);
|
|
};
|
|
P.times = P.mul = function(y) {
|
|
var carry, e, i, k, r, rL, t, xdL, ydL, x = this, Ctor = x.constructor, xd = x.d, yd = (y = new Ctor(y)).d;
|
|
y.s *= x.s;
|
|
if (!xd || !xd[0] || !yd || !yd[0]) {
|
|
return new Ctor(!y.s || xd && !xd[0] && !yd || yd && !yd[0] && !xd ? NaN : !xd || !yd ? y.s / 0 : y.s * 0);
|
|
}
|
|
e = mathfloor(x.e / LOG_BASE) + mathfloor(y.e / LOG_BASE);
|
|
xdL = xd.length;
|
|
ydL = yd.length;
|
|
if (xdL < ydL) {
|
|
r = xd;
|
|
xd = yd;
|
|
yd = r;
|
|
rL = xdL;
|
|
xdL = ydL;
|
|
ydL = rL;
|
|
}
|
|
r = [];
|
|
rL = xdL + ydL;
|
|
for (i = rL; i--; )
|
|
r.push(0);
|
|
for (i = ydL; --i >= 0; ) {
|
|
carry = 0;
|
|
for (k = xdL + i; k > i; ) {
|
|
t = r[k] + yd[i] * xd[k - i - 1] + carry;
|
|
r[k--] = t % BASE | 0;
|
|
carry = t / BASE | 0;
|
|
}
|
|
r[k] = (r[k] + carry) % BASE | 0;
|
|
}
|
|
for (; !r[--rL]; )
|
|
r.pop();
|
|
if (carry)
|
|
++e;
|
|
else
|
|
r.shift();
|
|
y.d = r;
|
|
y.e = getBase10Exponent(r, e);
|
|
return external ? finalise(y, Ctor.precision, Ctor.rounding) : y;
|
|
};
|
|
P.toBinary = function(sd, rm) {
|
|
return toStringBinary(this, 2, sd, rm);
|
|
};
|
|
P.toDecimalPlaces = P.toDP = function(dp, rm) {
|
|
var x = this, Ctor = x.constructor;
|
|
x = new Ctor(x);
|
|
if (dp === void 0)
|
|
return x;
|
|
checkInt32(dp, 0, MAX_DIGITS);
|
|
if (rm === void 0)
|
|
rm = Ctor.rounding;
|
|
else
|
|
checkInt32(rm, 0, 8);
|
|
return finalise(x, dp + x.e + 1, rm);
|
|
};
|
|
P.toExponential = function(dp, rm) {
|
|
var str, x = this, Ctor = x.constructor;
|
|
if (dp === void 0) {
|
|
str = finiteToString(x, true);
|
|
} else {
|
|
checkInt32(dp, 0, MAX_DIGITS);
|
|
if (rm === void 0)
|
|
rm = Ctor.rounding;
|
|
else
|
|
checkInt32(rm, 0, 8);
|
|
x = finalise(new Ctor(x), dp + 1, rm);
|
|
str = finiteToString(x, true, dp + 1);
|
|
}
|
|
return x.isNeg() && !x.isZero() ? "-" + str : str;
|
|
};
|
|
P.toFixed = function(dp, rm) {
|
|
var str, y, x = this, Ctor = x.constructor;
|
|
if (dp === void 0) {
|
|
str = finiteToString(x);
|
|
} else {
|
|
checkInt32(dp, 0, MAX_DIGITS);
|
|
if (rm === void 0)
|
|
rm = Ctor.rounding;
|
|
else
|
|
checkInt32(rm, 0, 8);
|
|
y = finalise(new Ctor(x), dp + x.e + 1, rm);
|
|
str = finiteToString(y, false, dp + y.e + 1);
|
|
}
|
|
return x.isNeg() && !x.isZero() ? "-" + str : str;
|
|
};
|
|
P.toFraction = function(maxD) {
|
|
var d, d0, d1, d2, e, k, n, n0, n1, pr, q, r, x = this, xd = x.d, Ctor = x.constructor;
|
|
if (!xd)
|
|
return new Ctor(x);
|
|
n1 = d0 = new Ctor(1);
|
|
d1 = n0 = new Ctor(0);
|
|
d = new Ctor(d1);
|
|
e = d.e = getPrecision(xd) - x.e - 1;
|
|
k = e % LOG_BASE;
|
|
d.d[0] = mathpow(10, k < 0 ? LOG_BASE + k : k);
|
|
if (maxD == null) {
|
|
maxD = e > 0 ? d : n1;
|
|
} else {
|
|
n = new Ctor(maxD);
|
|
if (!n.isInt() || n.lt(n1))
|
|
throw Error(invalidArgument + n);
|
|
maxD = n.gt(d) ? e > 0 ? d : n1 : n;
|
|
}
|
|
external = false;
|
|
n = new Ctor(digitsToString(xd));
|
|
pr = Ctor.precision;
|
|
Ctor.precision = e = xd.length * LOG_BASE * 2;
|
|
for (; ; ) {
|
|
q = divide(n, d, 0, 1, 1);
|
|
d2 = d0.plus(q.times(d1));
|
|
if (d2.cmp(maxD) == 1)
|
|
break;
|
|
d0 = d1;
|
|
d1 = d2;
|
|
d2 = n1;
|
|
n1 = n0.plus(q.times(d2));
|
|
n0 = d2;
|
|
d2 = d;
|
|
d = n.minus(q.times(d2));
|
|
n = d2;
|
|
}
|
|
d2 = divide(maxD.minus(d0), d1, 0, 1, 1);
|
|
n0 = n0.plus(d2.times(n1));
|
|
d0 = d0.plus(d2.times(d1));
|
|
n0.s = n1.s = x.s;
|
|
r = divide(n1, d1, e, 1).minus(x).abs().cmp(divide(n0, d0, e, 1).minus(x).abs()) < 1 ? [n1, d1] : [n0, d0];
|
|
Ctor.precision = pr;
|
|
external = true;
|
|
return r;
|
|
};
|
|
P.toHexadecimal = P.toHex = function(sd, rm) {
|
|
return toStringBinary(this, 16, sd, rm);
|
|
};
|
|
P.toNearest = function(y, rm) {
|
|
var x = this, Ctor = x.constructor;
|
|
x = new Ctor(x);
|
|
if (y == null) {
|
|
if (!x.d)
|
|
return x;
|
|
y = new Ctor(1);
|
|
rm = Ctor.rounding;
|
|
} else {
|
|
y = new Ctor(y);
|
|
if (rm === void 0) {
|
|
rm = Ctor.rounding;
|
|
} else {
|
|
checkInt32(rm, 0, 8);
|
|
}
|
|
if (!x.d)
|
|
return y.s ? x : y;
|
|
if (!y.d) {
|
|
if (y.s)
|
|
y.s = x.s;
|
|
return y;
|
|
}
|
|
}
|
|
if (y.d[0]) {
|
|
external = false;
|
|
x = divide(x, y, 0, rm, 1).times(y);
|
|
external = true;
|
|
finalise(x);
|
|
} else {
|
|
y.s = x.s;
|
|
x = y;
|
|
}
|
|
return x;
|
|
};
|
|
P.toNumber = function() {
|
|
return +this;
|
|
};
|
|
P.toOctal = function(sd, rm) {
|
|
return toStringBinary(this, 8, sd, rm);
|
|
};
|
|
P.toPower = P.pow = function(y) {
|
|
var e, k, pr, r, rm, s, x = this, Ctor = x.constructor, yn = +(y = new Ctor(y));
|
|
if (!x.d || !y.d || !x.d[0] || !y.d[0])
|
|
return new Ctor(mathpow(+x, yn));
|
|
x = new Ctor(x);
|
|
if (x.eq(1))
|
|
return x;
|
|
pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
if (y.eq(1))
|
|
return finalise(x, pr, rm);
|
|
e = mathfloor(y.e / LOG_BASE);
|
|
if (e >= y.d.length - 1 && (k = yn < 0 ? -yn : yn) <= MAX_SAFE_INTEGER) {
|
|
r = intPow(Ctor, x, k, pr);
|
|
return y.s < 0 ? new Ctor(1).div(r) : finalise(r, pr, rm);
|
|
}
|
|
s = x.s;
|
|
if (s < 0) {
|
|
if (e < y.d.length - 1)
|
|
return new Ctor(NaN);
|
|
if ((y.d[e] & 1) == 0)
|
|
s = 1;
|
|
if (x.e == 0 && x.d[0] == 1 && x.d.length == 1) {
|
|
x.s = s;
|
|
return x;
|
|
}
|
|
}
|
|
k = mathpow(+x, yn);
|
|
e = k == 0 || !isFinite(k) ? mathfloor(yn * (Math.log("0." + digitsToString(x.d)) / Math.LN10 + x.e + 1)) : new Ctor(k + "").e;
|
|
if (e > Ctor.maxE + 1 || e < Ctor.minE - 1)
|
|
return new Ctor(e > 0 ? s / 0 : 0);
|
|
external = false;
|
|
Ctor.rounding = x.s = 1;
|
|
k = Math.min(12, (e + "").length);
|
|
r = naturalExponential(y.times(naturalLogarithm(x, pr + k)), pr);
|
|
if (r.d) {
|
|
r = finalise(r, pr + 5, 1);
|
|
if (checkRoundingDigits(r.d, pr, rm)) {
|
|
e = pr + 10;
|
|
r = finalise(naturalExponential(y.times(naturalLogarithm(x, e + k)), e), e + 5, 1);
|
|
if (+digitsToString(r.d).slice(pr + 1, pr + 15) + 1 == 1e14) {
|
|
r = finalise(r, pr + 1, 0);
|
|
}
|
|
}
|
|
}
|
|
r.s = s;
|
|
external = true;
|
|
Ctor.rounding = rm;
|
|
return finalise(r, pr, rm);
|
|
};
|
|
P.toPrecision = function(sd, rm) {
|
|
var str, x = this, Ctor = x.constructor;
|
|
if (sd === void 0) {
|
|
str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);
|
|
} else {
|
|
checkInt32(sd, 1, MAX_DIGITS);
|
|
if (rm === void 0)
|
|
rm = Ctor.rounding;
|
|
else
|
|
checkInt32(rm, 0, 8);
|
|
x = finalise(new Ctor(x), sd, rm);
|
|
str = finiteToString(x, sd <= x.e || x.e <= Ctor.toExpNeg, sd);
|
|
}
|
|
return x.isNeg() && !x.isZero() ? "-" + str : str;
|
|
};
|
|
P.toSignificantDigits = P.toSD = function(sd, rm) {
|
|
var x = this, Ctor = x.constructor;
|
|
if (sd === void 0) {
|
|
sd = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
} else {
|
|
checkInt32(sd, 1, MAX_DIGITS);
|
|
if (rm === void 0)
|
|
rm = Ctor.rounding;
|
|
else
|
|
checkInt32(rm, 0, 8);
|
|
}
|
|
return finalise(new Ctor(x), sd, rm);
|
|
};
|
|
P.toString = function() {
|
|
var x = this, Ctor = x.constructor, str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);
|
|
return x.isNeg() && !x.isZero() ? "-" + str : str;
|
|
};
|
|
P.truncated = P.trunc = function() {
|
|
return finalise(new this.constructor(this), this.e + 1, 1);
|
|
};
|
|
P.valueOf = P.toJSON = function() {
|
|
var x = this, Ctor = x.constructor, str = finiteToString(x, x.e <= Ctor.toExpNeg || x.e >= Ctor.toExpPos);
|
|
return x.isNeg() ? "-" + str : str;
|
|
};
|
|
function digitsToString(d) {
|
|
var i, k, ws, indexOfLastWord = d.length - 1, str = "", w = d[0];
|
|
if (indexOfLastWord > 0) {
|
|
str += w;
|
|
for (i = 1; i < indexOfLastWord; i++) {
|
|
ws = d[i] + "";
|
|
k = LOG_BASE - ws.length;
|
|
if (k)
|
|
str += getZeroString(k);
|
|
str += ws;
|
|
}
|
|
w = d[i];
|
|
ws = w + "";
|
|
k = LOG_BASE - ws.length;
|
|
if (k)
|
|
str += getZeroString(k);
|
|
} else if (w === 0) {
|
|
return "0";
|
|
}
|
|
for (; w % 10 === 0; )
|
|
w /= 10;
|
|
return str + w;
|
|
}
|
|
__name(digitsToString, "digitsToString");
|
|
function checkInt32(i, min2, max2) {
|
|
if (i !== ~~i || i < min2 || i > max2) {
|
|
throw Error(invalidArgument + i);
|
|
}
|
|
}
|
|
__name(checkInt32, "checkInt32");
|
|
function checkRoundingDigits(d, i, rm, repeating) {
|
|
var di, k, r, rd;
|
|
for (k = d[0]; k >= 10; k /= 10)
|
|
--i;
|
|
if (--i < 0) {
|
|
i += LOG_BASE;
|
|
di = 0;
|
|
} else {
|
|
di = Math.ceil((i + 1) / LOG_BASE);
|
|
i %= LOG_BASE;
|
|
}
|
|
k = mathpow(10, LOG_BASE - i);
|
|
rd = d[di] % k | 0;
|
|
if (repeating == null) {
|
|
if (i < 3) {
|
|
if (i == 0)
|
|
rd = rd / 100 | 0;
|
|
else if (i == 1)
|
|
rd = rd / 10 | 0;
|
|
r = rm < 4 && rd == 99999 || rm > 3 && rd == 49999 || rd == 5e4 || rd == 0;
|
|
} else {
|
|
r = (rm < 4 && rd + 1 == k || rm > 3 && rd + 1 == k / 2) && (d[di + 1] / k / 100 | 0) == mathpow(10, i - 2) - 1 || (rd == k / 2 || rd == 0) && (d[di + 1] / k / 100 | 0) == 0;
|
|
}
|
|
} else {
|
|
if (i < 4) {
|
|
if (i == 0)
|
|
rd = rd / 1e3 | 0;
|
|
else if (i == 1)
|
|
rd = rd / 100 | 0;
|
|
else if (i == 2)
|
|
rd = rd / 10 | 0;
|
|
r = (repeating || rm < 4) && rd == 9999 || !repeating && rm > 3 && rd == 4999;
|
|
} else {
|
|
r = ((repeating || rm < 4) && rd + 1 == k || !repeating && rm > 3 && rd + 1 == k / 2) && (d[di + 1] / k / 1e3 | 0) == mathpow(10, i - 3) - 1;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
__name(checkRoundingDigits, "checkRoundingDigits");
|
|
function convertBase(str, baseIn, baseOut) {
|
|
var j, arr = [0], arrL, i = 0, strL = str.length;
|
|
for (; i < strL; ) {
|
|
for (arrL = arr.length; arrL--; )
|
|
arr[arrL] *= baseIn;
|
|
arr[0] += NUMERALS.indexOf(str.charAt(i++));
|
|
for (j = 0; j < arr.length; j++) {
|
|
if (arr[j] > baseOut - 1) {
|
|
if (arr[j + 1] === void 0)
|
|
arr[j + 1] = 0;
|
|
arr[j + 1] += arr[j] / baseOut | 0;
|
|
arr[j] %= baseOut;
|
|
}
|
|
}
|
|
}
|
|
return arr.reverse();
|
|
}
|
|
__name(convertBase, "convertBase");
|
|
function cosine(Ctor, x) {
|
|
var k, len, y;
|
|
if (x.isZero())
|
|
return x;
|
|
len = x.d.length;
|
|
if (len < 32) {
|
|
k = Math.ceil(len / 3);
|
|
y = (1 / tinyPow(4, k)).toString();
|
|
} else {
|
|
k = 16;
|
|
y = "2.3283064365386962890625e-10";
|
|
}
|
|
Ctor.precision += k;
|
|
x = taylorSeries(Ctor, 1, x.times(y), new Ctor(1));
|
|
for (var i = k; i--; ) {
|
|
var cos2x = x.times(x);
|
|
x = cos2x.times(cos2x).minus(cos2x).times(8).plus(1);
|
|
}
|
|
Ctor.precision -= k;
|
|
return x;
|
|
}
|
|
__name(cosine, "cosine");
|
|
var divide = function() {
|
|
function multiplyInteger(x, k, base) {
|
|
var temp, carry = 0, i = x.length;
|
|
for (x = x.slice(); i--; ) {
|
|
temp = x[i] * k + carry;
|
|
x[i] = temp % base | 0;
|
|
carry = temp / base | 0;
|
|
}
|
|
if (carry)
|
|
x.unshift(carry);
|
|
return x;
|
|
}
|
|
__name(multiplyInteger, "multiplyInteger");
|
|
function compare(a, b, aL, bL) {
|
|
var i, r;
|
|
if (aL != bL) {
|
|
r = aL > bL ? 1 : -1;
|
|
} else {
|
|
for (i = r = 0; i < aL; i++) {
|
|
if (a[i] != b[i]) {
|
|
r = a[i] > b[i] ? 1 : -1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
__name(compare, "compare");
|
|
function subtract(a, b, aL, base) {
|
|
var i = 0;
|
|
for (; aL--; ) {
|
|
a[aL] -= i;
|
|
i = a[aL] < b[aL] ? 1 : 0;
|
|
a[aL] = i * base + a[aL] - b[aL];
|
|
}
|
|
for (; !a[0] && a.length > 1; )
|
|
a.shift();
|
|
}
|
|
__name(subtract, "subtract");
|
|
return function(x, y, pr, rm, dp, base) {
|
|
var cmp, e, i, k, logBase, more, prod, prodL, q, qd, rem, remL, rem0, sd, t, xi, xL, yd0, yL, yz, Ctor = x.constructor, sign2 = x.s == y.s ? 1 : -1, xd = x.d, yd = y.d;
|
|
if (!xd || !xd[0] || !yd || !yd[0]) {
|
|
return new Ctor(
|
|
!x.s || !y.s || (xd ? yd && xd[0] == yd[0] : !yd) ? NaN : xd && xd[0] == 0 || !yd ? sign2 * 0 : sign2 / 0
|
|
);
|
|
}
|
|
if (base) {
|
|
logBase = 1;
|
|
e = x.e - y.e;
|
|
} else {
|
|
base = BASE;
|
|
logBase = LOG_BASE;
|
|
e = mathfloor(x.e / logBase) - mathfloor(y.e / logBase);
|
|
}
|
|
yL = yd.length;
|
|
xL = xd.length;
|
|
q = new Ctor(sign2);
|
|
qd = q.d = [];
|
|
for (i = 0; yd[i] == (xd[i] || 0); i++)
|
|
;
|
|
if (yd[i] > (xd[i] || 0))
|
|
e--;
|
|
if (pr == null) {
|
|
sd = pr = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
} else if (dp) {
|
|
sd = pr + (x.e - y.e) + 1;
|
|
} else {
|
|
sd = pr;
|
|
}
|
|
if (sd < 0) {
|
|
qd.push(1);
|
|
more = true;
|
|
} else {
|
|
sd = sd / logBase + 2 | 0;
|
|
i = 0;
|
|
if (yL == 1) {
|
|
k = 0;
|
|
yd = yd[0];
|
|
sd++;
|
|
for (; (i < xL || k) && sd--; i++) {
|
|
t = k * base + (xd[i] || 0);
|
|
qd[i] = t / yd | 0;
|
|
k = t % yd | 0;
|
|
}
|
|
more = k || i < xL;
|
|
} else {
|
|
k = base / (yd[0] + 1) | 0;
|
|
if (k > 1) {
|
|
yd = multiplyInteger(yd, k, base);
|
|
xd = multiplyInteger(xd, k, base);
|
|
yL = yd.length;
|
|
xL = xd.length;
|
|
}
|
|
xi = yL;
|
|
rem = xd.slice(0, yL);
|
|
remL = rem.length;
|
|
for (; remL < yL; )
|
|
rem[remL++] = 0;
|
|
yz = yd.slice();
|
|
yz.unshift(0);
|
|
yd0 = yd[0];
|
|
if (yd[1] >= base / 2)
|
|
++yd0;
|
|
do {
|
|
k = 0;
|
|
cmp = compare(yd, rem, yL, remL);
|
|
if (cmp < 0) {
|
|
rem0 = rem[0];
|
|
if (yL != remL)
|
|
rem0 = rem0 * base + (rem[1] || 0);
|
|
k = rem0 / yd0 | 0;
|
|
if (k > 1) {
|
|
if (k >= base)
|
|
k = base - 1;
|
|
prod = multiplyInteger(yd, k, base);
|
|
prodL = prod.length;
|
|
remL = rem.length;
|
|
cmp = compare(prod, rem, prodL, remL);
|
|
if (cmp == 1) {
|
|
k--;
|
|
subtract(prod, yL < prodL ? yz : yd, prodL, base);
|
|
}
|
|
} else {
|
|
if (k == 0)
|
|
cmp = k = 1;
|
|
prod = yd.slice();
|
|
}
|
|
prodL = prod.length;
|
|
if (prodL < remL)
|
|
prod.unshift(0);
|
|
subtract(rem, prod, remL, base);
|
|
if (cmp == -1) {
|
|
remL = rem.length;
|
|
cmp = compare(yd, rem, yL, remL);
|
|
if (cmp < 1) {
|
|
k++;
|
|
subtract(rem, yL < remL ? yz : yd, remL, base);
|
|
}
|
|
}
|
|
remL = rem.length;
|
|
} else if (cmp === 0) {
|
|
k++;
|
|
rem = [0];
|
|
}
|
|
qd[i++] = k;
|
|
if (cmp && rem[0]) {
|
|
rem[remL++] = xd[xi] || 0;
|
|
} else {
|
|
rem = [xd[xi]];
|
|
remL = 1;
|
|
}
|
|
} while ((xi++ < xL || rem[0] !== void 0) && sd--);
|
|
more = rem[0] !== void 0;
|
|
}
|
|
if (!qd[0])
|
|
qd.shift();
|
|
}
|
|
if (logBase == 1) {
|
|
q.e = e;
|
|
inexact = more;
|
|
} else {
|
|
for (i = 1, k = qd[0]; k >= 10; k /= 10)
|
|
i++;
|
|
q.e = i + e * logBase - 1;
|
|
finalise(q, dp ? pr + q.e + 1 : pr, rm, more);
|
|
}
|
|
return q;
|
|
};
|
|
}();
|
|
function finalise(x, sd, rm, isTruncated) {
|
|
var digits, i, j, k, rd, roundUp, w, xd, xdi, Ctor = x.constructor;
|
|
out:
|
|
if (sd != null) {
|
|
xd = x.d;
|
|
if (!xd)
|
|
return x;
|
|
for (digits = 1, k = xd[0]; k >= 10; k /= 10)
|
|
digits++;
|
|
i = sd - digits;
|
|
if (i < 0) {
|
|
i += LOG_BASE;
|
|
j = sd;
|
|
w = xd[xdi = 0];
|
|
rd = w / mathpow(10, digits - j - 1) % 10 | 0;
|
|
} else {
|
|
xdi = Math.ceil((i + 1) / LOG_BASE);
|
|
k = xd.length;
|
|
if (xdi >= k) {
|
|
if (isTruncated) {
|
|
for (; k++ <= xdi; )
|
|
xd.push(0);
|
|
w = rd = 0;
|
|
digits = 1;
|
|
i %= LOG_BASE;
|
|
j = i - LOG_BASE + 1;
|
|
} else {
|
|
break out;
|
|
}
|
|
} else {
|
|
w = k = xd[xdi];
|
|
for (digits = 1; k >= 10; k /= 10)
|
|
digits++;
|
|
i %= LOG_BASE;
|
|
j = i - LOG_BASE + digits;
|
|
rd = j < 0 ? 0 : w / mathpow(10, digits - j - 1) % 10 | 0;
|
|
}
|
|
}
|
|
isTruncated = isTruncated || sd < 0 || xd[xdi + 1] !== void 0 || (j < 0 ? w : w % mathpow(10, digits - j - 1));
|
|
roundUp = rm < 4 ? (rd || isTruncated) && (rm == 0 || rm == (x.s < 0 ? 3 : 2)) : rd > 5 || rd == 5 && (rm == 4 || isTruncated || rm == 6 && (i > 0 ? j > 0 ? w / mathpow(10, digits - j) : 0 : xd[xdi - 1]) % 10 & 1 || rm == (x.s < 0 ? 8 : 7));
|
|
if (sd < 1 || !xd[0]) {
|
|
xd.length = 0;
|
|
if (roundUp) {
|
|
sd -= x.e + 1;
|
|
xd[0] = mathpow(10, (LOG_BASE - sd % LOG_BASE) % LOG_BASE);
|
|
x.e = -sd || 0;
|
|
} else {
|
|
xd[0] = x.e = 0;
|
|
}
|
|
return x;
|
|
}
|
|
if (i == 0) {
|
|
xd.length = xdi;
|
|
k = 1;
|
|
xdi--;
|
|
} else {
|
|
xd.length = xdi + 1;
|
|
k = mathpow(10, LOG_BASE - i);
|
|
xd[xdi] = j > 0 ? (w / mathpow(10, digits - j) % mathpow(10, j) | 0) * k : 0;
|
|
}
|
|
if (roundUp) {
|
|
for (; ; ) {
|
|
if (xdi == 0) {
|
|
for (i = 1, j = xd[0]; j >= 10; j /= 10)
|
|
i++;
|
|
j = xd[0] += k;
|
|
for (k = 1; j >= 10; j /= 10)
|
|
k++;
|
|
if (i != k) {
|
|
x.e++;
|
|
if (xd[0] == BASE)
|
|
xd[0] = 1;
|
|
}
|
|
break;
|
|
} else {
|
|
xd[xdi] += k;
|
|
if (xd[xdi] != BASE)
|
|
break;
|
|
xd[xdi--] = 0;
|
|
k = 1;
|
|
}
|
|
}
|
|
}
|
|
for (i = xd.length; xd[--i] === 0; )
|
|
xd.pop();
|
|
}
|
|
if (external) {
|
|
if (x.e > Ctor.maxE) {
|
|
x.d = null;
|
|
x.e = NaN;
|
|
} else if (x.e < Ctor.minE) {
|
|
x.e = 0;
|
|
x.d = [0];
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
__name(finalise, "finalise");
|
|
function finiteToString(x, isExp, sd) {
|
|
if (!x.isFinite())
|
|
return nonFiniteToString(x);
|
|
var k, e = x.e, str = digitsToString(x.d), len = str.length;
|
|
if (isExp) {
|
|
if (sd && (k = sd - len) > 0) {
|
|
str = str.charAt(0) + "." + str.slice(1) + getZeroString(k);
|
|
} else if (len > 1) {
|
|
str = str.charAt(0) + "." + str.slice(1);
|
|
}
|
|
str = str + (x.e < 0 ? "e" : "e+") + x.e;
|
|
} else if (e < 0) {
|
|
str = "0." + getZeroString(-e - 1) + str;
|
|
if (sd && (k = sd - len) > 0)
|
|
str += getZeroString(k);
|
|
} else if (e >= len) {
|
|
str += getZeroString(e + 1 - len);
|
|
if (sd && (k = sd - e - 1) > 0)
|
|
str = str + "." + getZeroString(k);
|
|
} else {
|
|
if ((k = e + 1) < len)
|
|
str = str.slice(0, k) + "." + str.slice(k);
|
|
if (sd && (k = sd - len) > 0) {
|
|
if (e + 1 === len)
|
|
str += ".";
|
|
str += getZeroString(k);
|
|
}
|
|
}
|
|
return str;
|
|
}
|
|
__name(finiteToString, "finiteToString");
|
|
function getBase10Exponent(digits, e) {
|
|
var w = digits[0];
|
|
for (e *= LOG_BASE; w >= 10; w /= 10)
|
|
e++;
|
|
return e;
|
|
}
|
|
__name(getBase10Exponent, "getBase10Exponent");
|
|
function getLn10(Ctor, sd, pr) {
|
|
if (sd > LN10_PRECISION) {
|
|
external = true;
|
|
if (pr)
|
|
Ctor.precision = pr;
|
|
throw Error(precisionLimitExceeded);
|
|
}
|
|
return finalise(new Ctor(LN10), sd, 1, true);
|
|
}
|
|
__name(getLn10, "getLn10");
|
|
function getPi(Ctor, sd, rm) {
|
|
if (sd > PI_PRECISION)
|
|
throw Error(precisionLimitExceeded);
|
|
return finalise(new Ctor(PI), sd, rm, true);
|
|
}
|
|
__name(getPi, "getPi");
|
|
function getPrecision(digits) {
|
|
var w = digits.length - 1, len = w * LOG_BASE + 1;
|
|
w = digits[w];
|
|
if (w) {
|
|
for (; w % 10 == 0; w /= 10)
|
|
len--;
|
|
for (w = digits[0]; w >= 10; w /= 10)
|
|
len++;
|
|
}
|
|
return len;
|
|
}
|
|
__name(getPrecision, "getPrecision");
|
|
function getZeroString(k) {
|
|
var zs = "";
|
|
for (; k--; )
|
|
zs += "0";
|
|
return zs;
|
|
}
|
|
__name(getZeroString, "getZeroString");
|
|
function intPow(Ctor, x, n, pr) {
|
|
var isTruncated, r = new Ctor(1), k = Math.ceil(pr / LOG_BASE + 4);
|
|
external = false;
|
|
for (; ; ) {
|
|
if (n % 2) {
|
|
r = r.times(x);
|
|
if (truncate(r.d, k))
|
|
isTruncated = true;
|
|
}
|
|
n = mathfloor(n / 2);
|
|
if (n === 0) {
|
|
n = r.d.length - 1;
|
|
if (isTruncated && r.d[n] === 0)
|
|
++r.d[n];
|
|
break;
|
|
}
|
|
x = x.times(x);
|
|
truncate(x.d, k);
|
|
}
|
|
external = true;
|
|
return r;
|
|
}
|
|
__name(intPow, "intPow");
|
|
function isOdd(n) {
|
|
return n.d[n.d.length - 1] & 1;
|
|
}
|
|
__name(isOdd, "isOdd");
|
|
function maxOrMin(Ctor, args, ltgt) {
|
|
var y, x = new Ctor(args[0]), i = 0;
|
|
for (; ++i < args.length; ) {
|
|
y = new Ctor(args[i]);
|
|
if (!y.s) {
|
|
x = y;
|
|
break;
|
|
} else if (x[ltgt](y)) {
|
|
x = y;
|
|
}
|
|
}
|
|
return x;
|
|
}
|
|
__name(maxOrMin, "maxOrMin");
|
|
function naturalExponential(x, sd) {
|
|
var denominator, guard, j, pow2, sum2, t, wpr, rep = 0, i = 0, k = 0, Ctor = x.constructor, rm = Ctor.rounding, pr = Ctor.precision;
|
|
if (!x.d || !x.d[0] || x.e > 17) {
|
|
return new Ctor(x.d ? !x.d[0] ? 1 : x.s < 0 ? 0 : 1 / 0 : x.s ? x.s < 0 ? 0 : x : 0 / 0);
|
|
}
|
|
if (sd == null) {
|
|
external = false;
|
|
wpr = pr;
|
|
} else {
|
|
wpr = sd;
|
|
}
|
|
t = new Ctor(0.03125);
|
|
while (x.e > -2) {
|
|
x = x.times(t);
|
|
k += 5;
|
|
}
|
|
guard = Math.log(mathpow(2, k)) / Math.LN10 * 2 + 5 | 0;
|
|
wpr += guard;
|
|
denominator = pow2 = sum2 = new Ctor(1);
|
|
Ctor.precision = wpr;
|
|
for (; ; ) {
|
|
pow2 = finalise(pow2.times(x), wpr, 1);
|
|
denominator = denominator.times(++i);
|
|
t = sum2.plus(divide(pow2, denominator, wpr, 1));
|
|
if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum2.d).slice(0, wpr)) {
|
|
j = k;
|
|
while (j--)
|
|
sum2 = finalise(sum2.times(sum2), wpr, 1);
|
|
if (sd == null) {
|
|
if (rep < 3 && checkRoundingDigits(sum2.d, wpr - guard, rm, rep)) {
|
|
Ctor.precision = wpr += 10;
|
|
denominator = pow2 = t = new Ctor(1);
|
|
i = 0;
|
|
rep++;
|
|
} else {
|
|
return finalise(sum2, Ctor.precision = pr, rm, external = true);
|
|
}
|
|
} else {
|
|
Ctor.precision = pr;
|
|
return sum2;
|
|
}
|
|
}
|
|
sum2 = t;
|
|
}
|
|
}
|
|
__name(naturalExponential, "naturalExponential");
|
|
function naturalLogarithm(y, sd) {
|
|
var c, c0, denominator, e, numerator, rep, sum2, t, wpr, x1, x2, n = 1, guard = 10, x = y, xd = x.d, Ctor = x.constructor, rm = Ctor.rounding, pr = Ctor.precision;
|
|
if (x.s < 0 || !xd || !xd[0] || !x.e && xd[0] == 1 && xd.length == 1) {
|
|
return new Ctor(xd && !xd[0] ? -1 / 0 : x.s != 1 ? NaN : xd ? 0 : x);
|
|
}
|
|
if (sd == null) {
|
|
external = false;
|
|
wpr = pr;
|
|
} else {
|
|
wpr = sd;
|
|
}
|
|
Ctor.precision = wpr += guard;
|
|
c = digitsToString(xd);
|
|
c0 = c.charAt(0);
|
|
if (Math.abs(e = x.e) < 15e14) {
|
|
while (c0 < 7 && c0 != 1 || c0 == 1 && c.charAt(1) > 3) {
|
|
x = x.times(y);
|
|
c = digitsToString(x.d);
|
|
c0 = c.charAt(0);
|
|
n++;
|
|
}
|
|
e = x.e;
|
|
if (c0 > 1) {
|
|
x = new Ctor("0." + c);
|
|
e++;
|
|
} else {
|
|
x = new Ctor(c0 + "." + c.slice(1));
|
|
}
|
|
} else {
|
|
t = getLn10(Ctor, wpr + 2, pr).times(e + "");
|
|
x = naturalLogarithm(new Ctor(c0 + "." + c.slice(1)), wpr - guard).plus(t);
|
|
Ctor.precision = pr;
|
|
return sd == null ? finalise(x, pr, rm, external = true) : x;
|
|
}
|
|
x1 = x;
|
|
sum2 = numerator = x = divide(x.minus(1), x.plus(1), wpr, 1);
|
|
x2 = finalise(x.times(x), wpr, 1);
|
|
denominator = 3;
|
|
for (; ; ) {
|
|
numerator = finalise(numerator.times(x2), wpr, 1);
|
|
t = sum2.plus(divide(numerator, new Ctor(denominator), wpr, 1));
|
|
if (digitsToString(t.d).slice(0, wpr) === digitsToString(sum2.d).slice(0, wpr)) {
|
|
sum2 = sum2.times(2);
|
|
if (e !== 0)
|
|
sum2 = sum2.plus(getLn10(Ctor, wpr + 2, pr).times(e + ""));
|
|
sum2 = divide(sum2, new Ctor(n), wpr, 1);
|
|
if (sd == null) {
|
|
if (checkRoundingDigits(sum2.d, wpr - guard, rm, rep)) {
|
|
Ctor.precision = wpr += guard;
|
|
t = numerator = x = divide(x1.minus(1), x1.plus(1), wpr, 1);
|
|
x2 = finalise(x.times(x), wpr, 1);
|
|
denominator = rep = 1;
|
|
} else {
|
|
return finalise(sum2, Ctor.precision = pr, rm, external = true);
|
|
}
|
|
} else {
|
|
Ctor.precision = pr;
|
|
return sum2;
|
|
}
|
|
}
|
|
sum2 = t;
|
|
denominator += 2;
|
|
}
|
|
}
|
|
__name(naturalLogarithm, "naturalLogarithm");
|
|
function nonFiniteToString(x) {
|
|
return String(x.s * x.s / 0);
|
|
}
|
|
__name(nonFiniteToString, "nonFiniteToString");
|
|
function parseDecimal(x, str) {
|
|
var e, i, len;
|
|
if ((e = str.indexOf(".")) > -1)
|
|
str = str.replace(".", "");
|
|
if ((i = str.search(/e/i)) > 0) {
|
|
if (e < 0)
|
|
e = i;
|
|
e += +str.slice(i + 1);
|
|
str = str.substring(0, i);
|
|
} else if (e < 0) {
|
|
e = str.length;
|
|
}
|
|
for (i = 0; str.charCodeAt(i) === 48; i++)
|
|
;
|
|
for (len = str.length; str.charCodeAt(len - 1) === 48; --len)
|
|
;
|
|
str = str.slice(i, len);
|
|
if (str) {
|
|
len -= i;
|
|
x.e = e = e - i - 1;
|
|
x.d = [];
|
|
i = (e + 1) % LOG_BASE;
|
|
if (e < 0)
|
|
i += LOG_BASE;
|
|
if (i < len) {
|
|
if (i)
|
|
x.d.push(+str.slice(0, i));
|
|
for (len -= LOG_BASE; i < len; )
|
|
x.d.push(+str.slice(i, i += LOG_BASE));
|
|
str = str.slice(i);
|
|
i = LOG_BASE - str.length;
|
|
} else {
|
|
i -= len;
|
|
}
|
|
for (; i--; )
|
|
str += "0";
|
|
x.d.push(+str);
|
|
if (external) {
|
|
if (x.e > x.constructor.maxE) {
|
|
x.d = null;
|
|
x.e = NaN;
|
|
} else if (x.e < x.constructor.minE) {
|
|
x.e = 0;
|
|
x.d = [0];
|
|
}
|
|
}
|
|
} else {
|
|
x.e = 0;
|
|
x.d = [0];
|
|
}
|
|
return x;
|
|
}
|
|
__name(parseDecimal, "parseDecimal");
|
|
function parseOther(x, str) {
|
|
var base, Ctor, divisor, i, isFloat, len, p, xd, xe;
|
|
if (str.indexOf("_") > -1) {
|
|
str = str.replace(/(\d)_(?=\d)/g, "$1");
|
|
if (isDecimal.test(str))
|
|
return parseDecimal(x, str);
|
|
} else if (str === "Infinity" || str === "NaN") {
|
|
if (!+str)
|
|
x.s = NaN;
|
|
x.e = NaN;
|
|
x.d = null;
|
|
return x;
|
|
}
|
|
if (isHex.test(str)) {
|
|
base = 16;
|
|
str = str.toLowerCase();
|
|
} else if (isBinary.test(str)) {
|
|
base = 2;
|
|
} else if (isOctal.test(str)) {
|
|
base = 8;
|
|
} else {
|
|
throw Error(invalidArgument + str);
|
|
}
|
|
i = str.search(/p/i);
|
|
if (i > 0) {
|
|
p = +str.slice(i + 1);
|
|
str = str.substring(2, i);
|
|
} else {
|
|
str = str.slice(2);
|
|
}
|
|
i = str.indexOf(".");
|
|
isFloat = i >= 0;
|
|
Ctor = x.constructor;
|
|
if (isFloat) {
|
|
str = str.replace(".", "");
|
|
len = str.length;
|
|
i = len - i;
|
|
divisor = intPow(Ctor, new Ctor(base), i, i * 2);
|
|
}
|
|
xd = convertBase(str, base, BASE);
|
|
xe = xd.length - 1;
|
|
for (i = xe; xd[i] === 0; --i)
|
|
xd.pop();
|
|
if (i < 0)
|
|
return new Ctor(x.s * 0);
|
|
x.e = getBase10Exponent(xd, xe);
|
|
x.d = xd;
|
|
external = false;
|
|
if (isFloat)
|
|
x = divide(x, divisor, len * 4);
|
|
if (p)
|
|
x = x.times(Math.abs(p) < 54 ? mathpow(2, p) : Decimal.pow(2, p));
|
|
external = true;
|
|
return x;
|
|
}
|
|
__name(parseOther, "parseOther");
|
|
function sine(Ctor, x) {
|
|
var k, len = x.d.length;
|
|
if (len < 3) {
|
|
return x.isZero() ? x : taylorSeries(Ctor, 2, x, x);
|
|
}
|
|
k = 1.4 * Math.sqrt(len);
|
|
k = k > 16 ? 16 : k | 0;
|
|
x = x.times(1 / tinyPow(5, k));
|
|
x = taylorSeries(Ctor, 2, x, x);
|
|
var sin2_x, d5 = new Ctor(5), d16 = new Ctor(16), d20 = new Ctor(20);
|
|
for (; k--; ) {
|
|
sin2_x = x.times(x);
|
|
x = x.times(d5.plus(sin2_x.times(d16.times(sin2_x).minus(d20))));
|
|
}
|
|
return x;
|
|
}
|
|
__name(sine, "sine");
|
|
function taylorSeries(Ctor, n, x, y, isHyperbolic) {
|
|
var j, t, u, x2, i = 1, pr = Ctor.precision, k = Math.ceil(pr / LOG_BASE);
|
|
external = false;
|
|
x2 = x.times(x);
|
|
u = new Ctor(y);
|
|
for (; ; ) {
|
|
t = divide(u.times(x2), new Ctor(n++ * n++), pr, 1);
|
|
u = isHyperbolic ? y.plus(t) : y.minus(t);
|
|
y = divide(t.times(x2), new Ctor(n++ * n++), pr, 1);
|
|
t = u.plus(y);
|
|
if (t.d[k] !== void 0) {
|
|
for (j = k; t.d[j] === u.d[j] && j--; )
|
|
;
|
|
if (j == -1)
|
|
break;
|
|
}
|
|
j = u;
|
|
u = y;
|
|
y = t;
|
|
t = j;
|
|
i++;
|
|
}
|
|
external = true;
|
|
t.d.length = k + 1;
|
|
return t;
|
|
}
|
|
__name(taylorSeries, "taylorSeries");
|
|
function tinyPow(b, e) {
|
|
var n = b;
|
|
while (--e)
|
|
n *= b;
|
|
return n;
|
|
}
|
|
__name(tinyPow, "tinyPow");
|
|
function toLessThanHalfPi(Ctor, x) {
|
|
var t, isNeg = x.s < 0, pi = getPi(Ctor, Ctor.precision, 1), halfPi = pi.times(0.5);
|
|
x = x.abs();
|
|
if (x.lte(halfPi)) {
|
|
quadrant = isNeg ? 4 : 1;
|
|
return x;
|
|
}
|
|
t = x.divToInt(pi);
|
|
if (t.isZero()) {
|
|
quadrant = isNeg ? 3 : 2;
|
|
} else {
|
|
x = x.minus(t.times(pi));
|
|
if (x.lte(halfPi)) {
|
|
quadrant = isOdd(t) ? isNeg ? 2 : 3 : isNeg ? 4 : 1;
|
|
return x;
|
|
}
|
|
quadrant = isOdd(t) ? isNeg ? 1 : 4 : isNeg ? 3 : 2;
|
|
}
|
|
return x.minus(pi).abs();
|
|
}
|
|
__name(toLessThanHalfPi, "toLessThanHalfPi");
|
|
function toStringBinary(x, baseOut, sd, rm) {
|
|
var base, e, i, k, len, roundUp, str, xd, y, Ctor = x.constructor, isExp = sd !== void 0;
|
|
if (isExp) {
|
|
checkInt32(sd, 1, MAX_DIGITS);
|
|
if (rm === void 0)
|
|
rm = Ctor.rounding;
|
|
else
|
|
checkInt32(rm, 0, 8);
|
|
} else {
|
|
sd = Ctor.precision;
|
|
rm = Ctor.rounding;
|
|
}
|
|
if (!x.isFinite()) {
|
|
str = nonFiniteToString(x);
|
|
} else {
|
|
str = finiteToString(x);
|
|
i = str.indexOf(".");
|
|
if (isExp) {
|
|
base = 2;
|
|
if (baseOut == 16) {
|
|
sd = sd * 4 - 3;
|
|
} else if (baseOut == 8) {
|
|
sd = sd * 3 - 2;
|
|
}
|
|
} else {
|
|
base = baseOut;
|
|
}
|
|
if (i >= 0) {
|
|
str = str.replace(".", "");
|
|
y = new Ctor(1);
|
|
y.e = str.length - i;
|
|
y.d = convertBase(finiteToString(y), 10, base);
|
|
y.e = y.d.length;
|
|
}
|
|
xd = convertBase(str, 10, base);
|
|
e = len = xd.length;
|
|
for (; xd[--len] == 0; )
|
|
xd.pop();
|
|
if (!xd[0]) {
|
|
str = isExp ? "0p+0" : "0";
|
|
} else {
|
|
if (i < 0) {
|
|
e--;
|
|
} else {
|
|
x = new Ctor(x);
|
|
x.d = xd;
|
|
x.e = e;
|
|
x = divide(x, y, sd, rm, 0, base);
|
|
xd = x.d;
|
|
e = x.e;
|
|
roundUp = inexact;
|
|
}
|
|
i = xd[sd];
|
|
k = base / 2;
|
|
roundUp = roundUp || xd[sd + 1] !== void 0;
|
|
roundUp = rm < 4 ? (i !== void 0 || roundUp) && (rm === 0 || rm === (x.s < 0 ? 3 : 2)) : i > k || i === k && (rm === 4 || roundUp || rm === 6 && xd[sd - 1] & 1 || rm === (x.s < 0 ? 8 : 7));
|
|
xd.length = sd;
|
|
if (roundUp) {
|
|
for (; ++xd[--sd] > base - 1; ) {
|
|
xd[sd] = 0;
|
|
if (!sd) {
|
|
++e;
|
|
xd.unshift(1);
|
|
}
|
|
}
|
|
}
|
|
for (len = xd.length; !xd[len - 1]; --len)
|
|
;
|
|
for (i = 0, str = ""; i < len; i++)
|
|
str += NUMERALS.charAt(xd[i]);
|
|
if (isExp) {
|
|
if (len > 1) {
|
|
if (baseOut == 16 || baseOut == 8) {
|
|
i = baseOut == 16 ? 4 : 3;
|
|
for (--len; len % i; len++)
|
|
str += "0";
|
|
xd = convertBase(str, base, baseOut);
|
|
for (len = xd.length; !xd[len - 1]; --len)
|
|
;
|
|
for (i = 1, str = "1."; i < len; i++)
|
|
str += NUMERALS.charAt(xd[i]);
|
|
} else {
|
|
str = str.charAt(0) + "." + str.slice(1);
|
|
}
|
|
}
|
|
str = str + (e < 0 ? "p" : "p+") + e;
|
|
} else if (e < 0) {
|
|
for (; ++e; )
|
|
str = "0" + str;
|
|
str = "0." + str;
|
|
} else {
|
|
if (++e > len)
|
|
for (e -= len; e--; )
|
|
str += "0";
|
|
else if (e < len)
|
|
str = str.slice(0, e) + "." + str.slice(e);
|
|
}
|
|
}
|
|
str = (baseOut == 16 ? "0x" : baseOut == 2 ? "0b" : baseOut == 8 ? "0o" : "") + str;
|
|
}
|
|
return x.s < 0 ? "-" + str : str;
|
|
}
|
|
__name(toStringBinary, "toStringBinary");
|
|
function truncate(arr, len) {
|
|
if (arr.length > len) {
|
|
arr.length = len;
|
|
return true;
|
|
}
|
|
}
|
|
__name(truncate, "truncate");
|
|
function abs(x) {
|
|
return new this(x).abs();
|
|
}
|
|
__name(abs, "abs");
|
|
function acos(x) {
|
|
return new this(x).acos();
|
|
}
|
|
__name(acos, "acos");
|
|
function acosh(x) {
|
|
return new this(x).acosh();
|
|
}
|
|
__name(acosh, "acosh");
|
|
function add(x, y) {
|
|
return new this(x).plus(y);
|
|
}
|
|
__name(add, "add");
|
|
function asin(x) {
|
|
return new this(x).asin();
|
|
}
|
|
__name(asin, "asin");
|
|
function asinh(x) {
|
|
return new this(x).asinh();
|
|
}
|
|
__name(asinh, "asinh");
|
|
function atan(x) {
|
|
return new this(x).atan();
|
|
}
|
|
__name(atan, "atan");
|
|
function atanh(x) {
|
|
return new this(x).atanh();
|
|
}
|
|
__name(atanh, "atanh");
|
|
function atan2(y, x) {
|
|
y = new this(y);
|
|
x = new this(x);
|
|
var r, pr = this.precision, rm = this.rounding, wpr = pr + 4;
|
|
if (!y.s || !x.s) {
|
|
r = new this(NaN);
|
|
} else if (!y.d && !x.d) {
|
|
r = getPi(this, wpr, 1).times(x.s > 0 ? 0.25 : 0.75);
|
|
r.s = y.s;
|
|
} else if (!x.d || y.isZero()) {
|
|
r = x.s < 0 ? getPi(this, pr, rm) : new this(0);
|
|
r.s = y.s;
|
|
} else if (!y.d || x.isZero()) {
|
|
r = getPi(this, wpr, 1).times(0.5);
|
|
r.s = y.s;
|
|
} else if (x.s < 0) {
|
|
this.precision = wpr;
|
|
this.rounding = 1;
|
|
r = this.atan(divide(y, x, wpr, 1));
|
|
x = getPi(this, wpr, 1);
|
|
this.precision = pr;
|
|
this.rounding = rm;
|
|
r = y.s < 0 ? r.minus(x) : r.plus(x);
|
|
} else {
|
|
r = this.atan(divide(y, x, wpr, 1));
|
|
}
|
|
return r;
|
|
}
|
|
__name(atan2, "atan2");
|
|
function cbrt(x) {
|
|
return new this(x).cbrt();
|
|
}
|
|
__name(cbrt, "cbrt");
|
|
function ceil(x) {
|
|
return finalise(x = new this(x), x.e + 1, 2);
|
|
}
|
|
__name(ceil, "ceil");
|
|
function clamp(x, min2, max2) {
|
|
return new this(x).clamp(min2, max2);
|
|
}
|
|
__name(clamp, "clamp");
|
|
function config(obj) {
|
|
if (!obj || typeof obj !== "object")
|
|
throw Error(decimalError + "Object expected");
|
|
var i, p, v, useDefaults = obj.defaults === true, ps = [
|
|
"precision",
|
|
1,
|
|
MAX_DIGITS,
|
|
"rounding",
|
|
0,
|
|
8,
|
|
"toExpNeg",
|
|
-EXP_LIMIT,
|
|
0,
|
|
"toExpPos",
|
|
0,
|
|
EXP_LIMIT,
|
|
"maxE",
|
|
0,
|
|
EXP_LIMIT,
|
|
"minE",
|
|
-EXP_LIMIT,
|
|
0,
|
|
"modulo",
|
|
0,
|
|
9
|
|
];
|
|
for (i = 0; i < ps.length; i += 3) {
|
|
if (p = ps[i], useDefaults)
|
|
this[p] = DEFAULTS[p];
|
|
if ((v = obj[p]) !== void 0) {
|
|
if (mathfloor(v) === v && v >= ps[i + 1] && v <= ps[i + 2])
|
|
this[p] = v;
|
|
else
|
|
throw Error(invalidArgument + p + ": " + v);
|
|
}
|
|
}
|
|
if (p = "crypto", useDefaults)
|
|
this[p] = DEFAULTS[p];
|
|
if ((v = obj[p]) !== void 0) {
|
|
if (v === true || v === false || v === 0 || v === 1) {
|
|
if (v) {
|
|
if (typeof crypto != "undefined" && crypto && (crypto.getRandomValues || crypto.randomBytes)) {
|
|
this[p] = true;
|
|
} else {
|
|
throw Error(cryptoUnavailable);
|
|
}
|
|
} else {
|
|
this[p] = false;
|
|
}
|
|
} else {
|
|
throw Error(invalidArgument + p + ": " + v);
|
|
}
|
|
}
|
|
return this;
|
|
}
|
|
__name(config, "config");
|
|
function cos(x) {
|
|
return new this(x).cos();
|
|
}
|
|
__name(cos, "cos");
|
|
function cosh(x) {
|
|
return new this(x).cosh();
|
|
}
|
|
__name(cosh, "cosh");
|
|
function clone(obj) {
|
|
var i, p, ps;
|
|
function Decimal2(v) {
|
|
var e, i2, t, x = this;
|
|
if (!(x instanceof Decimal2))
|
|
return new Decimal2(v);
|
|
x.constructor = Decimal2;
|
|
if (isDecimalInstance(v)) {
|
|
x.s = v.s;
|
|
if (external) {
|
|
if (!v.d || v.e > Decimal2.maxE) {
|
|
x.e = NaN;
|
|
x.d = null;
|
|
} else if (v.e < Decimal2.minE) {
|
|
x.e = 0;
|
|
x.d = [0];
|
|
} else {
|
|
x.e = v.e;
|
|
x.d = v.d.slice();
|
|
}
|
|
} else {
|
|
x.e = v.e;
|
|
x.d = v.d ? v.d.slice() : v.d;
|
|
}
|
|
return;
|
|
}
|
|
t = typeof v;
|
|
if (t === "number") {
|
|
if (v === 0) {
|
|
x.s = 1 / v < 0 ? -1 : 1;
|
|
x.e = 0;
|
|
x.d = [0];
|
|
return;
|
|
}
|
|
if (v < 0) {
|
|
v = -v;
|
|
x.s = -1;
|
|
} else {
|
|
x.s = 1;
|
|
}
|
|
if (v === ~~v && v < 1e7) {
|
|
for (e = 0, i2 = v; i2 >= 10; i2 /= 10)
|
|
e++;
|
|
if (external) {
|
|
if (e > Decimal2.maxE) {
|
|
x.e = NaN;
|
|
x.d = null;
|
|
} else if (e < Decimal2.minE) {
|
|
x.e = 0;
|
|
x.d = [0];
|
|
} else {
|
|
x.e = e;
|
|
x.d = [v];
|
|
}
|
|
} else {
|
|
x.e = e;
|
|
x.d = [v];
|
|
}
|
|
return;
|
|
} else if (v * 0 !== 0) {
|
|
if (!v)
|
|
x.s = NaN;
|
|
x.e = NaN;
|
|
x.d = null;
|
|
return;
|
|
}
|
|
return parseDecimal(x, v.toString());
|
|
} else if (t !== "string") {
|
|
throw Error(invalidArgument + v);
|
|
}
|
|
if ((i2 = v.charCodeAt(0)) === 45) {
|
|
v = v.slice(1);
|
|
x.s = -1;
|
|
} else {
|
|
if (i2 === 43)
|
|
v = v.slice(1);
|
|
x.s = 1;
|
|
}
|
|
return isDecimal.test(v) ? parseDecimal(x, v) : parseOther(x, v);
|
|
}
|
|
__name(Decimal2, "Decimal");
|
|
Decimal2.prototype = P;
|
|
Decimal2.ROUND_UP = 0;
|
|
Decimal2.ROUND_DOWN = 1;
|
|
Decimal2.ROUND_CEIL = 2;
|
|
Decimal2.ROUND_FLOOR = 3;
|
|
Decimal2.ROUND_HALF_UP = 4;
|
|
Decimal2.ROUND_HALF_DOWN = 5;
|
|
Decimal2.ROUND_HALF_EVEN = 6;
|
|
Decimal2.ROUND_HALF_CEIL = 7;
|
|
Decimal2.ROUND_HALF_FLOOR = 8;
|
|
Decimal2.EUCLID = 9;
|
|
Decimal2.config = Decimal2.set = config;
|
|
Decimal2.clone = clone;
|
|
Decimal2.isDecimal = isDecimalInstance;
|
|
Decimal2.abs = abs;
|
|
Decimal2.acos = acos;
|
|
Decimal2.acosh = acosh;
|
|
Decimal2.add = add;
|
|
Decimal2.asin = asin;
|
|
Decimal2.asinh = asinh;
|
|
Decimal2.atan = atan;
|
|
Decimal2.atanh = atanh;
|
|
Decimal2.atan2 = atan2;
|
|
Decimal2.cbrt = cbrt;
|
|
Decimal2.ceil = ceil;
|
|
Decimal2.clamp = clamp;
|
|
Decimal2.cos = cos;
|
|
Decimal2.cosh = cosh;
|
|
Decimal2.div = div;
|
|
Decimal2.exp = exp;
|
|
Decimal2.floor = floor;
|
|
Decimal2.hypot = hypot;
|
|
Decimal2.ln = ln;
|
|
Decimal2.log = log;
|
|
Decimal2.log10 = log10;
|
|
Decimal2.log2 = log2;
|
|
Decimal2.max = max;
|
|
Decimal2.min = min;
|
|
Decimal2.mod = mod;
|
|
Decimal2.mul = mul;
|
|
Decimal2.pow = pow;
|
|
Decimal2.random = random;
|
|
Decimal2.round = round;
|
|
Decimal2.sign = sign;
|
|
Decimal2.sin = sin;
|
|
Decimal2.sinh = sinh;
|
|
Decimal2.sqrt = sqrt;
|
|
Decimal2.sub = sub;
|
|
Decimal2.sum = sum;
|
|
Decimal2.tan = tan;
|
|
Decimal2.tanh = tanh;
|
|
Decimal2.trunc = trunc;
|
|
if (obj === void 0)
|
|
obj = {};
|
|
if (obj) {
|
|
if (obj.defaults !== true) {
|
|
ps = ["precision", "rounding", "toExpNeg", "toExpPos", "maxE", "minE", "modulo", "crypto"];
|
|
for (i = 0; i < ps.length; )
|
|
if (!obj.hasOwnProperty(p = ps[i++]))
|
|
obj[p] = this[p];
|
|
}
|
|
}
|
|
Decimal2.config(obj);
|
|
return Decimal2;
|
|
}
|
|
__name(clone, "clone");
|
|
function div(x, y) {
|
|
return new this(x).div(y);
|
|
}
|
|
__name(div, "div");
|
|
function exp(x) {
|
|
return new this(x).exp();
|
|
}
|
|
__name(exp, "exp");
|
|
function floor(x) {
|
|
return finalise(x = new this(x), x.e + 1, 3);
|
|
}
|
|
__name(floor, "floor");
|
|
function hypot() {
|
|
var i, n, t = new this(0);
|
|
external = false;
|
|
for (i = 0; i < arguments.length; ) {
|
|
n = new this(arguments[i++]);
|
|
if (!n.d) {
|
|
if (n.s) {
|
|
external = true;
|
|
return new this(1 / 0);
|
|
}
|
|
t = n;
|
|
} else if (t.d) {
|
|
t = t.plus(n.times(n));
|
|
}
|
|
}
|
|
external = true;
|
|
return t.sqrt();
|
|
}
|
|
__name(hypot, "hypot");
|
|
function isDecimalInstance(obj) {
|
|
return obj instanceof Decimal || obj && obj.toStringTag === tag || false;
|
|
}
|
|
__name(isDecimalInstance, "isDecimalInstance");
|
|
function ln(x) {
|
|
return new this(x).ln();
|
|
}
|
|
__name(ln, "ln");
|
|
function log(x, y) {
|
|
return new this(x).log(y);
|
|
}
|
|
__name(log, "log");
|
|
function log2(x) {
|
|
return new this(x).log(2);
|
|
}
|
|
__name(log2, "log2");
|
|
function log10(x) {
|
|
return new this(x).log(10);
|
|
}
|
|
__name(log10, "log10");
|
|
function max() {
|
|
return maxOrMin(this, arguments, "lt");
|
|
}
|
|
__name(max, "max");
|
|
function min() {
|
|
return maxOrMin(this, arguments, "gt");
|
|
}
|
|
__name(min, "min");
|
|
function mod(x, y) {
|
|
return new this(x).mod(y);
|
|
}
|
|
__name(mod, "mod");
|
|
function mul(x, y) {
|
|
return new this(x).mul(y);
|
|
}
|
|
__name(mul, "mul");
|
|
function pow(x, y) {
|
|
return new this(x).pow(y);
|
|
}
|
|
__name(pow, "pow");
|
|
function random(sd) {
|
|
var d, e, k, n, i = 0, r = new this(1), rd = [];
|
|
if (sd === void 0)
|
|
sd = this.precision;
|
|
else
|
|
checkInt32(sd, 1, MAX_DIGITS);
|
|
k = Math.ceil(sd / LOG_BASE);
|
|
if (!this.crypto) {
|
|
for (; i < k; )
|
|
rd[i++] = Math.random() * 1e7 | 0;
|
|
} else if (crypto.getRandomValues) {
|
|
d = crypto.getRandomValues(new Uint32Array(k));
|
|
for (; i < k; ) {
|
|
n = d[i];
|
|
if (n >= 429e7) {
|
|
d[i] = crypto.getRandomValues(new Uint32Array(1))[0];
|
|
} else {
|
|
rd[i++] = n % 1e7;
|
|
}
|
|
}
|
|
} else if (crypto.randomBytes) {
|
|
d = crypto.randomBytes(k *= 4);
|
|
for (; i < k; ) {
|
|
n = d[i] + (d[i + 1] << 8) + (d[i + 2] << 16) + ((d[i + 3] & 127) << 24);
|
|
if (n >= 214e7) {
|
|
crypto.randomBytes(4).copy(d, i);
|
|
} else {
|
|
rd.push(n % 1e7);
|
|
i += 4;
|
|
}
|
|
}
|
|
i = k / 4;
|
|
} else {
|
|
throw Error(cryptoUnavailable);
|
|
}
|
|
k = rd[--i];
|
|
sd %= LOG_BASE;
|
|
if (k && sd) {
|
|
n = mathpow(10, LOG_BASE - sd);
|
|
rd[i] = (k / n | 0) * n;
|
|
}
|
|
for (; rd[i] === 0; i--)
|
|
rd.pop();
|
|
if (i < 0) {
|
|
e = 0;
|
|
rd = [0];
|
|
} else {
|
|
e = -1;
|
|
for (; rd[0] === 0; e -= LOG_BASE)
|
|
rd.shift();
|
|
for (k = 1, n = rd[0]; n >= 10; n /= 10)
|
|
k++;
|
|
if (k < LOG_BASE)
|
|
e -= LOG_BASE - k;
|
|
}
|
|
r.e = e;
|
|
r.d = rd;
|
|
return r;
|
|
}
|
|
__name(random, "random");
|
|
function round(x) {
|
|
return finalise(x = new this(x), x.e + 1, this.rounding);
|
|
}
|
|
__name(round, "round");
|
|
function sign(x) {
|
|
x = new this(x);
|
|
return x.d ? x.d[0] ? x.s : 0 * x.s : x.s || NaN;
|
|
}
|
|
__name(sign, "sign");
|
|
function sin(x) {
|
|
return new this(x).sin();
|
|
}
|
|
__name(sin, "sin");
|
|
function sinh(x) {
|
|
return new this(x).sinh();
|
|
}
|
|
__name(sinh, "sinh");
|
|
function sqrt(x) {
|
|
return new this(x).sqrt();
|
|
}
|
|
__name(sqrt, "sqrt");
|
|
function sub(x, y) {
|
|
return new this(x).sub(y);
|
|
}
|
|
__name(sub, "sub");
|
|
function sum() {
|
|
var i = 0, args = arguments, x = new this(args[i]);
|
|
external = false;
|
|
for (; x.s && ++i < args.length; )
|
|
x = x.plus(args[i]);
|
|
external = true;
|
|
return finalise(x, this.precision, this.rounding);
|
|
}
|
|
__name(sum, "sum");
|
|
function tan(x) {
|
|
return new this(x).tan();
|
|
}
|
|
__name(tan, "tan");
|
|
function tanh(x) {
|
|
return new this(x).tanh();
|
|
}
|
|
__name(tanh, "tanh");
|
|
function trunc(x) {
|
|
return finalise(x = new this(x), x.e + 1, 1);
|
|
}
|
|
__name(trunc, "trunc");
|
|
P[Symbol.for("nodejs.util.inspect.custom")] = P.toString;
|
|
P[Symbol.toStringTag] = "Decimal";
|
|
var Decimal = P.constructor = clone(DEFAULTS);
|
|
LN10 = new Decimal(LN10);
|
|
PI = new Decimal(PI);
|
|
var decimal_default = Decimal;
|
|
// Annotate the CommonJS export names for ESM import in node:
|
|
0 && (module.exports = {
|
|
Decimal,
|
|
makeStrictEnum,
|
|
objectEnumValues
|
|
});
|
|
/*!
|
|
* decimal.js v10.4.2
|
|
* An arbitrary-precision Decimal type for JavaScript.
|
|
* https://github.com/MikeMcl/decimal.js
|
|
* Copyright (c) 2022 Michael Mclaughlin <M8ch88l@gmail.com>
|
|
* MIT Licence
|
|
*/
|