ncantu 6bf37be44e Cron restart services (bitcoind, mempool), service-login-verify, website-skeleton, docs
**Motivations:**
- Consigner l'état actuel du dépôt (cron, service-login-verify, website-skeleton, userwallet, docs).
- Centraliser les modifications en attente.

**Root causes:**
- N/A (commit groupé).

**Correctifs:**
- N/A.

**Evolutions:**
- Cron quotidien restart services : script local sans SSH, systemd (bitcoin-signet, bitcoin, APIs, dashboard, userwallet, website-skeleton) + Docker (mempool, bitcoin-signet-instance).
- Feature cron-restart-services-local : documentation et règle scripts locaux / pas d'SSH.
- service-login-verify : module vérification login (buildAllowedPubkeys, verifyLoginProof, nonceCache).
- website-skeleton : app iframe UserWallet, config, systemd unit.
- userwallet : collectSignatures, relay.
- docs : DOMAINS_AND_PORTS, README, WEBSITE_SKELETON ; features userwallet-contrat-login, timeouts-backoff, service-login-verify.

**Pages affectées:**
- data/restart-services-cron.sh, data/restart-services.log, data/sync-utxos.log
- features/cron-restart-services-local.md, features/service-login-verify.md, features/userwallet-contrat-login-reste-a-faire.md, features/userwallet-timeouts-backoff.md
- docs/DOMAINS_AND_PORTS.md, docs/README.md, docs/WEBSITE_SKELETON.md
- configure-nginx-proxy.sh
- service-login-verify/ (src, dist, node_modules)
- userwallet/src/utils/collectSignatures.ts, userwallet/src/utils/relay.ts
- website-skeleton/
2026-01-28 00:48:37 +01:00

813 lines
31 KiB
TypeScript

/*! noble-secp256k1 - MIT License (c) 2019 Paul Miller (paulmillr.com) */
/**
* 4KB JS implementation of secp256k1 ECDSA / Schnorr signatures & ECDH.
* Compliant with RFC6979 & BIP340.
* @module
*/
/**
* Curve params. secp256k1 is short weierstrass / koblitz curve. Equation is y² == x³ + ax + b.
* * P = `2n**256n-2n**32n-2n**977n` // field over which calculations are done
* * N = `2n**256n - 0x14551231950b75fc4402da1732fc9bebfn` // group order, amount of curve points
* * h = `1n` // cofactor
* * a = `0n` // equation param
* * b = `7n` // equation param
* * Gx, Gy are coordinates of Generator / base point
*/
const secp256k1_CURVE: WeierstrassOpts<bigint> = {
p: 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2fn,
n: 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141n,
h: 1n,
a: 0n,
b: 7n,
Gx: 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798n,
Gy: 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8n,
};
const { p: P, n: N, Gx, Gy, b: _b } = secp256k1_CURVE;
const L = 32; // field / group byte length
const L2 = 64;
/** Alias to Uint8Array. */
export type Bytes = Uint8Array;
/** Hex-encoded string or Uint8Array. */
export type Hex = Bytes | string;
/** Hex-encoded string, Uint8Array or bigint. */
export type PrivKey = Hex | bigint;
/** Signature instance. Has properties r and s. */
export type SigLike = { r: bigint; s: bigint };
/** Signature instance, which allows recovering pubkey from it. */
export type RecoveredSignature = Signature & { recovery: number };
export type SignatureWithRecovery = RecoveredSignature;
/** Weierstrass elliptic curve options. */
export type WeierstrassOpts<T> = Readonly<{
p: bigint;
n: bigint;
h: bigint;
a: T;
b: T;
Gx: T;
Gy: T;
}>;
// Helpers and Precomputes sections are reused between libraries
// ## Helpers
// ----------
// error helper, messes-up stack trace
const err = (m = ''): never => {
throw new Error(m);
};
const isBig = (n: unknown): n is bigint => typeof n === 'bigint'; // is big integer
const isStr = (s: unknown): s is string => typeof s === 'string'; // is string
const isBytes = (a: unknown): a is Uint8Array =>
a instanceof Uint8Array || (ArrayBuffer.isView(a) && a.constructor.name === 'Uint8Array');
/** assert is Uint8Array (of specific length) */
const abytes = (a: unknown, l?: number): Bytes =>
!isBytes(a) || (typeof l === 'number' && l > 0 && a.length !== l)
? err('Uint8Array expected')
: a;
/** create Uint8Array */
const u8n = (len: number) => new Uint8Array(len);
const u8fr = (buf: ArrayLike<number>) => Uint8Array.from(buf);
const padh = (n: number | bigint, pad: number) => n.toString(16).padStart(pad, '0');
const bytesToHex = (b: Bytes): string =>
Array.from(abytes(b))
.map((e) => padh(e, 2))
.join('');
const C = { _0: 48, _9: 57, A: 65, F: 70, a: 97, f: 102 } as const; // ASCII characters
const _ch = (ch: number): number | undefined => {
if (ch >= C._0 && ch <= C._9) return ch - C._0; // '2' => 50-48
if (ch >= C.A && ch <= C.F) return ch - (C.A - 10); // 'B' => 66-(65-10)
if (ch >= C.a && ch <= C.f) return ch - (C.a - 10); // 'b' => 98-(97-10)
return;
};
const hexToBytes = (hex: string): Bytes => {
const e = 'hex invalid';
if (!isStr(hex)) return err(e);
const hl = hex.length;
const al = hl / 2;
if (hl % 2) return err(e);
const array = u8n(al);
for (let ai = 0, hi = 0; ai < al; ai++, hi += 2) {
// treat each char as ASCII
const n1 = _ch(hex.charCodeAt(hi)); // parse first char, multiply it by 16
const n2 = _ch(hex.charCodeAt(hi + 1)); // parse second char
if (n1 === undefined || n2 === undefined) return err(e);
array[ai] = n1 * 16 + n2; // example: 'A9' => 10*16 + 9
}
return array;
};
/** normalize hex or ui8a to ui8a */
const toU8 = (a: Hex, len?: number) => abytes(isStr(a) ? hexToBytes(a) : u8fr(abytes(a)), len);
declare const globalThis: Record<string, any> | undefined; // Typescript symbol present in browsers
const cr = () => globalThis?.crypto; // WebCrypto is available in all modern environments
const subtle = () => cr()?.subtle ?? err('crypto.subtle must be defined');
// prettier-ignore
const concatBytes = (...arrs: Bytes[]): Bytes => {
const r = u8n(arrs.reduce((sum, a) => sum + abytes(a).length, 0)); // create u8a of summed length
let pad = 0; // walk through each array,
arrs.forEach(a => { r.set(a, pad); pad += a.length; }); // ensure they have proper type
return r;
};
/** WebCrypto OS-level CSPRNG (random number generator). Will throw when not available. */
const randomBytes = (len: number = L): Bytes => {
const c = cr();
return c.getRandomValues(u8n(len));
};
const big = BigInt;
const arange = (n: bigint, min: bigint, max: bigint, msg = 'bad number: out of range'): bigint =>
isBig(n) && min <= n && n < max ? n : err(msg);
/** modular division */
const M = (a: bigint, b: bigint = P) => {
const r = a % b;
return r >= 0n ? r : b + r;
};
const modN = (a: bigint) => M(a, N);
/** Modular inversion using eucledian GCD (non-CT). No negative exponent for now. */
// prettier-ignore
const invert = (num: bigint, md: bigint): bigint => {
if (num === 0n || md <= 0n) err('no inverse n=' + num + ' mod=' + md);
let a = M(num, md), b = md, x = 0n, y = 1n, u = 1n, v = 0n;
while (a !== 0n) {
const q = b / a, r = b % a;
const m = x - u * q, n = y - v * q;
b = a, a = r, x = u, y = v, u = m, v = n;
}
return b === 1n ? M(x, md) : err('no inverse'); // b is gcd at this point
};
const callHash = (name: string) => {
// @ts-ignore
const fn = etc[name];
if (typeof fn !== 'function') err('hashes.' + name + ' not set');
return fn;
};
const apoint = (p: unknown) => (p instanceof Point ? p : err('Point expected'));
/** Point in 2d xy affine coordinates. */
export interface AffinePoint {
x: bigint;
y: bigint;
}
// ## End of Helpers
// -----------------
/** secp256k1 formula. Koblitz curves are subclass of weierstrass curves with a=0, making it x³+b */
const koblitz = (x: bigint) => M(M(x * x) * x + _b);
/** assert is field element or 0 */
const afield0 = (n: bigint) => arange(n, 0n, P);
/** assert is field element */
const afield = (n: bigint) => arange(n, 1n, P);
/** assert is group elem */
const agroup = (n: bigint) => arange(n, 1n, N);
const isEven = (y: bigint) => (y & 1n) === 0n;
/** create Uint8Array of byte n */
const u8of = (n: number) => Uint8Array.of(n);
const getPrefix = (y: bigint) => u8of(isEven(y) ? 0x02 : 0x03);
/** lift_x from BIP340 calculates square root. Validates x, then validates root*root. */
const lift_x = (x: bigint) => {
// Let c = x³ + 7 mod p. Fail if x ≥ p. (also fail if x < 1)
const c = koblitz(afield(x));
// c = √y
// y = c^((p+1)/4) mod p
// This formula works for fields p = 3 mod 4 -- a special, fast case.
// Paper: "Square Roots from 1;24,51,10 to Dan Shanks".
let r = 1n;
for (let num = c, e = (P + 1n) / 4n; e > 0n; e >>= 1n) {
// powMod: modular exponentiation.
if (e & 1n) r = (r * num) % P; // Uses exponentiation by squaring.
num = (num * num) % P; // Not constant-time.
}
return M(r * r) === c ? r : err('sqrt invalid'); // check if result is valid
};
/** Point in 3d xyz projective coordinates. 3d takes less inversions than 2d. */
class Point {
static BASE: Point;
static ZERO: Point;
readonly px: bigint;
readonly py: bigint;
readonly pz: bigint;
constructor(px: bigint, py: bigint, pz: bigint) {
this.px = afield0(px);
this.py = afield(py); // y can't be 0 in Projective
this.pz = afield0(pz);
Object.freeze(this);
}
/** Convert Uint8Array or hex string to Point. */
static fromBytes(bytes: Bytes): Point {
abytes(bytes);
let p: Point | undefined = undefined;
// First byte is prefix, rest is data. There are 2 kinds: compressed & uncompressed:
// * [0x02 or 0x03][32-byte x coordinate]
// * [0x04] [32-byte x coordinate][32-byte y coordinate]
const head = bytes[0];
const tail = bytes.subarray(1);
const x = sliceBytesNumBE(tail, 0, L);
const len = bytes.length;
// Compressed 33-byte point, 0x02 or 0x03 prefix
if (len === L + 1 && [0x02, 0x03].includes(head)) {
// Equation is y² == x³ + ax + b. We calculate y from x.
// y = √y²; there are two solutions: y, -y. Determine proper solution based on prefix
let y = lift_x(x);
const evenY = isEven(y);
const evenH = isEven(big(head));
if (evenH !== evenY) y = M(-y);
p = new Point(x, y, 1n);
}
// Uncompressed 65-byte point, 0x04 prefix
if (len === L2 + 1 && head === 0x04) p = new Point(x, sliceBytesNumBE(tail, L, L2), 1n);
// Validate point
return p ? p.assertValidity() : err('bad point: not on curve');
}
/** Equality check: compare points P&Q. */
equals(other: Point): boolean {
const { px: X1, py: Y1, pz: Z1 } = this;
const { px: X2, py: Y2, pz: Z2 } = apoint(other); // checks class equality
const X1Z2 = M(X1 * Z2);
const X2Z1 = M(X2 * Z1);
const Y1Z2 = M(Y1 * Z2);
const Y2Z1 = M(Y2 * Z1);
return X1Z2 === X2Z1 && Y1Z2 === Y2Z1;
}
is0(): boolean {
return this.equals(I);
}
/** Flip point over y coordinate. */
negate(): Point {
return new Point(this.px, M(-this.py), this.pz);
}
/** Point doubling: P+P, complete formula. */
double(): Point {
return this.add(this);
}
/**
* Point addition: P+Q, complete, exception-free formula
* (Renes-Costello-Batina, algo 1 of [2015/1060](https://eprint.iacr.org/2015/1060)).
* Cost: `12M + 0S + 3*a + 3*b3 + 23add`.
*/
// prettier-ignore
add(other: Point): Point {
const { px: X1, py: Y1, pz: Z1 } = this;
const { px: X2, py: Y2, pz: Z2 } = apoint(other);
const a = 0n;
const b = _b;
let X3 = 0n, Y3 = 0n, Z3 = 0n;
const b3 = M(b * 3n);
let t0 = M(X1 * X2), t1 = M(Y1 * Y2), t2 = M(Z1 * Z2), t3 = M(X1 + Y1); // step 1
let t4 = M(X2 + Y2); // step 5
t3 = M(t3 * t4); t4 = M(t0 + t1); t3 = M(t3 - t4); t4 = M(X1 + Z1);
let t5 = M(X2 + Z2); // step 10
t4 = M(t4 * t5); t5 = M(t0 + t2); t4 = M(t4 - t5); t5 = M(Y1 + Z1);
X3 = M(Y2 + Z2); // step 15
t5 = M(t5 * X3); X3 = M(t1 + t2); t5 = M(t5 - X3); Z3 = M(a * t4);
X3 = M(b3 * t2); // step 20
Z3 = M(X3 + Z3); X3 = M(t1 - Z3); Z3 = M(t1 + Z3); Y3 = M(X3 * Z3);
t1 = M(t0 + t0); // step 25
t1 = M(t1 + t0); t2 = M(a * t2); t4 = M(b3 * t4); t1 = M(t1 + t2);
t2 = M(t0 - t2); // step 30
t2 = M(a * t2); t4 = M(t4 + t2); t0 = M(t1 * t4); Y3 = M(Y3 + t0);
t0 = M(t5 * t4); // step 35
X3 = M(t3 * X3); X3 = M(X3 - t0); t0 = M(t3 * t1); Z3 = M(t5 * Z3);
Z3 = M(Z3 + t0); // step 40
return new Point(X3, Y3, Z3);
}
/**
* Point-by-scalar multiplication. Scalar must be in range 1 <= n < CURVE.n.
* Uses {@link wNAF} for base point.
* Uses fake point to mitigate side-channel leakage.
* @param n scalar by which point is multiplied
* @param safe safe mode guards against timing attacks; unsafe mode is faster
*/
multiply(n: bigint, safe = true): Point {
if (!safe && n === 0n) return I;
agroup(n);
if (n === 1n) return this;
if (this.equals(G)) return wNAF(n).p;
// init result point & fake point
let p = I;
let f = G;
for (let d: Point = this; n > 0n; d = d.double(), n >>= 1n) {
// if bit is present, add to point
// if not present, add to fake, for timing safety
if (n & 1n) p = p.add(d);
else if (safe) f = f.add(d);
}
return p;
}
/** Convert point to 2d xy affine point. (X, Y, Z) ∋ (x=X/Z, y=Y/Z) */
toAffine(): AffinePoint {
const { px: x, py: y, pz: z } = this;
// fast-paths for ZERO point OR Z=1
if (this.equals(I)) return { x: 0n, y: 0n };
if (z === 1n) return { x, y };
const iz = invert(z, P);
// (Z * Z^-1) must be 1, otherwise bad math
if (M(z * iz) !== 1n) err('inverse invalid');
// x = X*Z^-1; y = Y*Z^-1
return { x: M(x * iz), y: M(y * iz) };
}
/** Checks if the point is valid and on-curve. */
assertValidity(): Point {
const { x, y } = this.toAffine(); // convert to 2d xy affine point.
afield(x); // must be in range 1 <= x,y < P
afield(y);
// y² == x³ + ax + b, equation sides must be equal
return M(y * y) === koblitz(x) ? this : err('bad point: not on curve');
}
/** Converts point to 33/65-byte Uint8Array. */
toBytes(isCompressed = true): Bytes {
const { x, y } = this.assertValidity().toAffine();
const x32b = numTo32b(x);
if (isCompressed) return concatBytes(getPrefix(y), x32b);
return concatBytes(u8of(0x04), x32b, numTo32b(y));
}
/** Create 3d xyz point from 2d xy. (0, 0) => (0, 1, 0), not (0, 0, 1) */
static fromAffine(ap: AffinePoint): Point {
const { x, y } = ap;
return x === 0n && y === 0n ? I : new Point(x, y, 1n);
}
toHex(isCompressed?: boolean): string {
return bytesToHex(this.toBytes(isCompressed));
}
static fromPrivateKey(k: Bytes): Point {
return G.multiply(toPrivScalar(k));
}
static fromHex(hex: Hex): Point {
return Point.fromBytes(toU8(hex));
}
get x(): bigint {
return this.toAffine().x;
}
get y(): bigint {
return this.toAffine().y;
}
toRawBytes(isCompressed?: boolean): Bytes {
return this.toBytes(isCompressed);
}
}
/** Generator / base point */
const G: Point = new Point(Gx, Gy, 1n);
/** Identity / zero point */
const I: Point = new Point(0n, 1n, 0n);
// Static aliases
Point.BASE = G;
Point.ZERO = I;
/** `Q = u1⋅G + u2⋅R`. Verifies Q is not ZERO. Unsafe: non-CT. */
const doubleScalarMulUns = (R: Point, u1: bigint, u2: bigint): Point => {
return G.multiply(u1, false).add(R.multiply(u2, false)).assertValidity();
};
const bytesToNumBE = (b: Bytes): bigint => big('0x' + (bytesToHex(b) || '0'));
const sliceBytesNumBE = (b: Bytes, from: number, to: number) => bytesToNumBE(b.subarray(from, to));
const B256 = 2n ** 256n; // secp256k1 is weierstrass curve. Equation is x³ + ax + b.
/** Number to 32b. Must be 0 <= num < B256. validate, pad, to bytes. */
const numTo32b = (num: bigint): Bytes => hexToBytes(padh(arange(num, 0n, B256), L2));
/** Normalize private key to scalar (bigint). Verifies scalar is in range 1<s<N */
const toPrivScalar = (pr: PrivKey): bigint => {
const num = isBig(pr) ? pr : bytesToNumBE(toU8(pr, L));
return arange(num, 1n, N, 'private key invalid 3');
};
/** For Signature malleability, validates sig.s is bigger than N/2. */
const highS = (n: bigint): boolean => n > N >> 1n;
/** Creates 33/65-byte public key from 32-byte private key. */
const getPublicKey = (privKey: PrivKey, isCompressed = true): Bytes => {
return G.multiply(toPrivScalar(privKey)).toBytes(isCompressed);
};
/** ECDSA Signature class. Supports only compact 64-byte representation, not DER. */
class Signature {
readonly r: bigint;
readonly s: bigint;
readonly recovery?: number;
constructor(r: bigint, s: bigint, recovery?: number) {
this.r = agroup(r); // 1 <= r < N
this.s = agroup(s); // 1 <= s < N
if (recovery != null) this.recovery = recovery;
Object.freeze(this);
}
/** Create signature from 64b compact (r || s) representation. */
static fromBytes(b: Bytes): Signature {
abytes(b, L2);
const r = sliceBytesNumBE(b, 0, L);
const s = sliceBytesNumBE(b, L, L2);
return new Signature(r, s);
}
toBytes(): Bytes {
const { r, s } = this;
return concatBytes(numTo32b(r), numTo32b(s));
}
/** Copy signature, with newly added recovery bit. */
addRecoveryBit(bit: number): RecoveredSignature {
return new Signature(this.r, this.s, bit) as RecoveredSignature;
}
hasHighS(): boolean {
return highS(this.s);
}
toCompactRawBytes(): Bytes {
return this.toBytes();
}
toCompactHex(): string {
return bytesToHex(this.toBytes());
}
recoverPublicKey(msg: Bytes): Point {
return recoverPublicKey(this as unknown as RecoveredSignature, msg);
}
static fromCompact(hex: Hex): Signature {
return Signature.fromBytes(toU8(hex, L2));
}
assertValidity(): Signature {
return this;
}
normalizeS(): Signature {
const { r, s, recovery } = this;
return highS(s) ? new Signature(r, modN(-s), recovery) : this;
}
}
/**
* RFC6979: ensure ECDSA msg is X bytes, convert to BigInt.
* RFC suggests optional truncating via bits2octets.
* FIPS 186-4 4.6 suggests the leftmost min(nBitLen, outLen) bits,
* which matches bits2int. bits2int can produce res>N.
*/
const bits2int = (bytes: Bytes): bigint => {
const delta = bytes.length * 8 - 256;
if (delta > 1024) err('msg invalid'); // our CUSTOM check, "just-in-case": prohibit long inputs
const num = bytesToNumBE(bytes);
return delta > 0 ? num >> big(delta) : num;
};
/** int2octets can't be used; pads small msgs with 0: BAD for truncation as per RFC vectors */
const bits2int_modN = (bytes: Bytes): bigint => modN(bits2int(abytes(bytes)));
type HmacFnSync = undefined | ((key: Bytes, ...msgs: Bytes[]) => Bytes);
/**
* Option to enable hedged signatures with improved security.
*
* * Randomly generated k is bad, because broken CSPRNG would leak private keys.
* * Deterministic k (RFC6979) is better; but is suspectible to fault attacks.
*
* We allow using technique described in RFC6979 3.6: additional k', a.k.a. adding randomness
* to deterministic sig. If CSPRNG is broken & randomness is weak, it would STILL be as secure
* as ordinary sig without ExtraEntropy.
*
* * `true` means "fetch data, from CSPRNG, incorporate it into k generation"
* * `false` means "disable extra entropy, use purely deterministic k"
* * `Uint8Array` passed means "incorporate following data into k generation"
*
* https://paulmillr.com/posts/deterministic-signatures/
*/
export type ExtraEntropy = boolean | Hex;
type OptS = { lowS?: boolean; extraEntropy?: ExtraEntropy };
type OptV = { lowS?: boolean };
const signOpts: OptS = { lowS: true };
const veriOpts: OptV = { lowS: true };
type BC = { seed: Bytes; k2sig: (kb: Bytes) => RecoveredSignature | undefined }; //for hmac-drbg
// RFC6979 signature generation, preparation step.
const prepSig = (msgh: Hex, priv: PrivKey, opts: OptS = signOpts): BC => {
if (['der', 'recovered', 'canonical'].some((k) => k in opts))
// legacy opts
err('option not supported');
let { lowS, extraEntropy } = opts; // generates low-s sigs by default
if (lowS == null) lowS = true; // RFC6979 3.2: we skip step A
const i2o = numTo32b; // int to octets
const h1i = bits2int_modN(toU8(msgh)); // msg bigint
const h1o = i2o(h1i); // msg octets
const d = toPrivScalar(priv); // validate private key, convert to bigint
const seed = [i2o(d), h1o]; // Step D of RFC6979 3.2
/** RFC6979 3.6: additional k' (optional). See {@link ExtraEntropy}. */
// K = HMAC_K(V || 0x00 || int2octets(x) || bits2octets(h1) || k')
if (extraEntropy) seed.push(extraEntropy === true ? randomBytes(L) : toU8(extraEntropy));
const m = h1i; // convert msg to bigint
// Converts signature params into point w r/s, checks result for validity.
// To transform k => Signature:
// q = k⋅G
// r = q.x mod n
// s = k^-1(m + rd) mod n
const k2sig = (kBytes: Bytes): RecoveredSignature | undefined => {
// RFC 6979 Section 3.2, step 3: k = bits2int(T)
// Important: all mod() calls here must be done over N
const k = bits2int(kBytes);
if (!(1n <= k && k < N)) return; // Check 0 < k < CURVE.n
const q = G.multiply(k).toAffine(); // q = k⋅G
const r = modN(q.x); // r = q.x mod n
if (r === 0n) return;
const ik = invert(k, N); // k^-1 mod n, NOT mod P
const s = modN(ik * modN(m + modN(d * r))); // s = k^-1(m + rd) mod n
if (s === 0n) return;
let normS = s; // normalized S
let recovery = (q.x === r ? 0 : 2) | Number(q.y & 1n); // recovery bit (2 or 3, when q.x > n)
if (lowS && highS(s)) {
// if lowS was passed, ensure s is always
normS = modN(-s); // in the bottom half of CURVE.n
recovery ^= 1;
}
return new Signature(r, normS, recovery) as RecoveredSignature; // use normS, not s
};
return { seed: concatBytes(...seed), k2sig };
};
type Pred<T> = (v: Uint8Array) => T | undefined;
// HMAC-DRBG from NIST 800-90. Minimal, non-full-spec - used for RFC6979 signatures.
const hmacDrbg = <T>(asynchronous: boolean) => {
let v = u8n(L); // Steps B, C of RFC6979 3.2: set hashLen
let k = u8n(L); // In our case, it's always equal to L
let i = 0; // Iterations counter, will throw when over max
const NULL = u8n(0);
const reset = () => {
v.fill(1);
k.fill(0);
i = 0;
};
const max = 1000;
const _e = 'drbg: tried 1000 values';
if (asynchronous) {
// asynchronous=true
// h = hmac(K || V || ...)
const h = (...b: Bytes[]) => etc.hmacSha256Async(k, v, ...b);
const reseed = async (seed = NULL) => {
// HMAC-DRBG reseed() function. Steps D-G
k = await h(u8of(0x00), seed); // k = hmac(K || V || 0x00 || seed)
v = await h(); // v = hmac(K || V)
if (seed.length === 0) return;
k = await h(u8of(0x01), seed); // k = hmac(K || V || 0x01 || seed)
v = await h(); // v = hmac(K || V)
};
// HMAC-DRBG generate() function
const gen = async () => {
if (i++ >= max) err(_e);
v = await h(); // v = hmac(K || V)
return v; // this diverges from noble-curves: we don't allow arbitrary output len!
};
// Do not reuse returned fn for more than 1 sig:
// 1) it's slower (JIT screws up). 2. unsafe (async race conditions)
return async (seed: Bytes, pred: Pred<T>): Promise<T> => {
reset();
await reseed(seed); // Steps D-G
let res: T | undefined = undefined; // Step H: grind until k is in [1..n-1]
while (!(res = pred(await gen()))) await reseed(); // test predicate until it returns ok
reset();
return res!;
};
} else {
// asynchronous=false; same as above, but synchronous
// h = hmac(K || V || ...)
const h = (...b: Bytes[]) => callHash('hmacSha256Sync')(k, v, ...b);
const reseed = (seed = NULL) => {
// HMAC-DRBG reseed() function. Steps D-G
k = h(u8of(0x00), seed); // k = hmac(k || v || 0x00 || seed)
v = h(); // v = hmac(k || v)
if (seed.length === 0) return;
k = h(u8of(0x01), seed); // k = hmac(k || v || 0x01 || seed)
v = h(); // v = hmac(k || v)
};
// HMAC-DRBG generate() function
const gen = () => {
if (i++ >= max) err(_e);
v = h(); // v = hmac(k || v)
return v; // this diverges from noble-curves: we don't allow arbitrary output len!
};
// Do not reuse returned fn for more than 1 sig:
// 1) it's slower (JIT screws up). 2. unsafe (async race conditions)
return (seed: Bytes, pred: Pred<T>): T => {
reset();
reseed(seed); // Steps D-G
let res: T | undefined = undefined; // Step H: grind until k is in [1..n-1]
while (!(res = pred(gen()))) reseed(); // test predicate until it returns ok
reset();
return res!;
};
}
};
/**
* Sign a msg hash using secp256k1. Async.
* Follows [SEC1](https://secg.org/sec1-v2.pdf) 4.1.2 & RFC6979.
* It's suggested to enable hedging ({@link ExtraEntropy}) to prevent fault attacks.
* @param msgh - message HASH, not message itself e.g. sha256(message)
* @param priv - private key
* @param opts - `lowS: true` prevents malleability, `extraEntropy: true` enables hedging
*/
const signAsync = async (
msgh: Hex,
priv: PrivKey,
opts: OptS = signOpts
): Promise<RecoveredSignature> => {
// Re-run drbg until k2sig returns ok
const { seed, k2sig } = prepSig(msgh, priv, opts);
const sig = await hmacDrbg<RecoveredSignature>(true)(seed, k2sig);
return sig;
};
/**
* Sign a msg hash using secp256k1.
* Follows [SEC1](https://secg.org/sec1-v2.pdf) 4.1.2 & RFC6979.
* It's suggested to enable hedging ({@link ExtraEntropy}) to prevent fault attacks.
* @param msgh - message HASH, not message itself e.g. sha256(message)
* @param priv - private key
* @param opts - `lowS: true` prevents malleability, `extraEntropy: true` enables hedging
* @example
* const sig = sign(sha256('hello'), privKey, { extraEntropy: true }).toBytes();
*/
const sign = (msgh: Hex, priv: PrivKey, opts: OptS = signOpts): RecoveredSignature => {
// Re-run drbg until k2sig returns ok
const { seed, k2sig } = prepSig(msgh, priv, opts);
const sig = hmacDrbg<RecoveredSignature>(false)(seed, k2sig) as RecoveredSignature;
return sig;
};
/**
* Verify a signature using secp256k1.
* Follows [SEC1](https://secg.org/sec1-v2.pdf) 4.1.4.
* Default lowS=true, prevents malleability.
* @param sig - signature, 64-byte or Signature instance
* @param msgh - message HASH, not message itself e.g. sha256(message)
* @param pub - public key
* @param opts - { lowS: true } is default, prohibits s >= CURVE.n/2 to prevent malleability
*/
const verify = (sig: Hex | SigLike, msgh: Hex, pub: Hex, opts: OptV = veriOpts): boolean => {
let { lowS } = opts;
if (lowS == null) lowS = true;
if ('strict' in opts) err('option not supported');
let sigg: Signature;
// Previous ver supported DER sigs.
// We throw error when DER is suspected now.
const rs = sig && typeof sig === 'object' && 'r' in sig;
if (!rs && toU8(sig).length !== L2) err('signature must be 64 bytes');
try {
sigg = rs ? new Signature(sig.r, sig.s) : Signature.fromCompact(sig);
const h = bits2int_modN(toU8(msgh)); // Truncate hash
const P = Point.fromBytes(toU8(pub)); // Validate public key
const { r, s } = sigg;
if (lowS && highS(s)) return false; // lowS bans sig.s >= CURVE.n/2
const is = invert(s, N); // s^-1
const u1 = modN(h * is); // u1 = hs^-1 mod n
const u2 = modN(r * is); // u2 = rs^-1 mod n
const R = doubleScalarMulUns(P, u1, u2).toAffine(); // R = u1⋅G + u2⋅P
// Stop if R is identity / zero point. Check is done inside `doubleScalarMulUns`
const v = modN(R.x); // R.x must be in N's field, not P's
return v === r; // mod(R.x, n) == r
} catch (error) {
return false;
}
};
/**
* ECDSA public key recovery. Requires msg hash and recovery id.
* Follows [SEC1](https://secg.org/sec1-v2.pdf) 4.1.6.
*/
const recoverPublicKey = (sig: RecoveredSignature, msgh: Hex): Point => {
const { r, s, recovery } = sig;
// 0 or 1 recovery id determines sign of "y" coordinate.
// 2 or 3 means q.x was >N.
if (![0, 1, 2, 3].includes(recovery)) err('recovery id invalid');
const h = bits2int_modN(toU8(msgh, L)); // Truncate hash
const radj = recovery === 2 || recovery === 3 ? r + N : r;
afield(radj); // ensure q.x is still a field element
const head = getPrefix(big(recovery)); // head is 0x02 or 0x03
const Rb = concatBytes(head, numTo32b(radj)); // concat head + r
const R = Point.fromBytes(Rb);
const ir = invert(radj, N); // r^-1
const u1 = modN(-h * ir); // -hr^-1
const u2 = modN(s * ir); // sr^-1
return doubleScalarMulUns(R, u1, u2); // (sr^-1)R-(hr^-1)G = -(hr^-1)G + (sr^-1)
};
/**
* Elliptic Curve Diffie-Hellman (ECDH) on secp256k1.
* Result is **NOT hashed**. Use hash or KDF on it if you need.
* @param privA private key A
* @param pubB public key B
* @param isCompressed 33-byte (true) or 65-byte (false) output
* @returns public key C
*/
const getSharedSecret = (privA: Hex, pubB: Hex, isCompressed = true): Bytes => {
return Point.fromBytes(toU8(pubB)).multiply(toPrivScalar(privA)).toBytes(isCompressed);
};
// FIPS 186 B.4.1 compliant key generation produces private keys with modulo bias being neglible.
// takes >N+8 bytes, returns (hash mod n-1)+1
const hashToPrivateKey = (hash: Hex): Bytes => {
hash = toU8(hash);
if (hash.length < L + 8 || hash.length > 1024) err('expected 40-1024b');
const num = M(bytesToNumBE(hash), N - 1n);
return numTo32b(num + 1n);
};
const randomPrivateKey = () => hashToPrivateKey(randomBytes(L + 16)); // FIPS 186 B.4.1.
const _sha = 'SHA-256';
/** Math, hex, byte helpers. Not in `utils` because utils share API with noble-curves. */
const etc = {
hexToBytes: hexToBytes as (hex: string) => Bytes,
bytesToHex: bytesToHex as (bytes: Bytes) => string,
concatBytes: concatBytes as (...arrs: Bytes[]) => Bytes,
bytesToNumberBE: bytesToNumBE as (a: Bytes) => bigint,
numberToBytesBE: numTo32b as (n: bigint) => Bytes,
mod: M as (a: bigint, md?: bigint) => bigint,
invert: invert as (num: bigint, md?: bigint) => bigint, // math utilities
hmacSha256Async: async (key: Bytes, ...msgs: Bytes[]): Promise<Bytes> => {
const s = subtle();
const name = 'HMAC';
const k = await s.importKey('raw', key, { name, hash: { name: _sha } }, false, ['sign']);
return u8n(await s.sign(name, k, concatBytes(...msgs)));
},
hmacSha256Sync: undefined as HmacFnSync, // For TypeScript. Actual logic is below
hashToPrivateKey: hashToPrivateKey as (hash: Hex) => Bytes,
randomBytes: randomBytes as (len?: number) => Bytes,
};
/** Curve-specific utilities for private keys. */
const utils = {
normPrivateKeyToScalar: toPrivScalar as (p: PrivKey) => bigint,
isValidPrivateKey: (key: Hex): boolean => {
try {
return !!toPrivScalar(key);
} catch (e) {
return false;
}
},
randomPrivateKey: randomPrivateKey as () => Bytes,
precompute: (w = 8, p: Point = G): Point => {
p.multiply(3n);
w;
return p;
},
};
// ## Precomputes
// --------------
const W = 8; // W is window size
const scalarBits = 256;
const pwindows = Math.ceil(scalarBits / W) + 1; // 33 for W=8
const pwindowSize = 2 ** (W - 1); // 128 for W=8
const precompute = () => {
const points: Point[] = [];
let p = G;
let b = p;
for (let w = 0; w < pwindows; w++) {
b = p;
points.push(b);
for (let i = 1; i < pwindowSize; i++) {
b = b.add(p);
points.push(b);
} // i=1, bc we skip 0
p = b.double();
}
return points;
};
let Gpows: Point[] | undefined = undefined; // precomputes for base point G
// const-time negate
const ctneg = (cnd: boolean, p: Point) => {
const n = p.negate();
return cnd ? n : p;
};
/**
* Precomputes give 12x faster getPublicKey(), 10x sign(), 2x verify() by
* caching multiples of G (base point). Cache is stored in 32MB of RAM.
* Any time `G.multiply` is done, precomputes are used.
* Not used for getSharedSecret, which instead multiplies random pubkey `P.multiply`.
*
* w-ary non-adjacent form (wNAF) precomputation method is 10% slower than windowed method,
* but takes 2x less RAM. RAM reduction is possible by utilizing `.subtract`.
*
* !! Precomputes can be disabled by commenting-out call of the wNAF() inside Point#multiply().
*/
const wNAF = (n: bigint): { p: Point; f: Point } => {
const comp = Gpows || (Gpows = precompute());
let p = I;
let f = G; // f must be G, or could become I in the end
const pow_2_w = 2 ** W; // 256 for W=8
const maxNum = pow_2_w; // 256 for W=8
const mask = big(pow_2_w - 1); // 255 for W=8 == mask 0b11111111
const shiftBy = big(W); // 8 for W=8
for (let w = 0; w < pwindows; w++) {
let wbits = Number(n & mask); // extract W bits.
n >>= shiftBy; // shift number by W bits.
if (wbits > pwindowSize) {
wbits -= maxNum;
n += 1n;
} // split if bits > max: +224 => 256-32
const off = w * pwindowSize;
const offF = off; // offsets, evaluate both
const offP = off + Math.abs(wbits) - 1;
const isEven = w % 2 !== 0; // conditions, evaluate both
const isNeg = wbits < 0;
if (wbits === 0) {
// off == I: can't add it. Adding random offF instead.
f = f.add(ctneg(isEven, comp[offF])); // bits are 0: add garbage to fake point
} else {
p = p.add(ctneg(isNeg, comp[offP])); // bits are 1: add to result point
}
}
return { p, f }; // return both real and fake points for JIT
};
// !! Remove the export below to easily use in REPL / browser console
export {
secp256k1_CURVE as CURVE,
etc,
getPublicKey,
getSharedSecret,
Point,
Point as ProjectivePoint,
sign,
signAsync,
Signature,
utils,
verify,
};