""" Pipeline d'extraction d'entités """ import os import logging import re from typing import Dict, Any, List logger = logging.getLogger(__name__) def run(doc_id: str, ctx: Dict[str, Any]) -> None: """Pipeline d'extraction d'entités""" logger.info(f"🔍 Extraction d'entités pour le document {doc_id}") try: ocr_text = ctx.get("ocr_text", "") document_type = ctx.get("document_type", "autre") # Extraction basique entities = _extract_basic_entities(ocr_text, document_type) ctx.update({ "extracted_entities": entities, "entities_count": len(entities) }) logger.info(f"✅ Extraction terminée pour {doc_id}: {len(entities)} entités") except Exception as e: logger.error(f"❌ Erreur extraction {doc_id}: {e}") ctx["extraction_error"] = str(e) def _extract_basic_entities(text: str, doc_type: str) -> List[Dict[str, Any]]: """Extraction basique d'entités""" entities = [] # Emails emails = re.findall(r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b', text) for email in emails: entities.append({ "type": "contact", "subtype": "email", "value": email, "confidence": 0.95 }) # Téléphones phones = re.findall(r'\b0[1-9](?:[.\-\s]?\d{2}){4}\b', text) for phone in phones: entities.append({ "type": "contact", "subtype": "phone", "value": phone, "confidence": 0.9 }) # Dates dates = re.findall(r'\b\d{1,2}[\/\-\.]\d{1,2}[\/\-\.]\d{4}\b', text) for date in dates: entities.append({ "type": "date", "subtype": "generic", "value": date, "confidence": 0.8 }) return entities